(see Bowen & Tanmer, High Resolution X-ray Difffractometry and Topography, Chap. 3)

mismatch

(a)

Common epilayer defects

(see Bowen & Tanner, High Resolution X-ray Diffractometry and Topography, Chap. 3)

Common epilayer defects

Investigate using rocking curves

⁽g)

inhomogeneity

inhomogeneity

Investigate using rocking curves

Film thickness

Integrated intensity changes increases w/ thickness Interference fringes

Mismatch

relaxed

Mismatch

Layer & substrate peaks split - rotation invariant

Measure, say, (004) peak separation $\delta \theta$, from which

 $\delta d/d = -\delta \theta \cot \theta = m^*$ (mismatch)

Misorientation

First, determine orientation of substrate

rotate ϕ to bring plane normal into counter plane

do ω scans at this position and at ϕ + 180°

orientation angle = 1/2 difference in two angles

Misorientation

First, determine orientation of substrate

Layer tilt (assume small)

layer peak shifts w// ϕ in ω scans

Misorientation

First, determine orientation of substrate

Layer tilt (assume small)

layer peak shifts w/ ϕ in ω scans

Misorientation

First, determine orientation of substrate

Layer tilt (assume small)

layer peak shifts w/ ϕ in ω scans

Misorientation

First, determine orientation of substrate

Layer tilt (assume small)

layer peak shifts w/ ϕ in ω scans

make 3 shift measurements $(\Delta_0, \Delta_{90}, \Delta_{180})$ then $\Delta_0 = \beta \cos \omega$ $\Delta_{90} = \beta \cos (\omega + 90)$ $\Delta_{180} = \beta \cos (\omega + 180)$ $\Delta_{90}/\Delta_0 = \tan \omega$

Dislocations

From:

high mismatch strain, locally relaxed local plastic deformation due to strain growth dislocations

Dislocations

From:

high mismatch strain, locally relaxed local plastic deformation due to strain growth dislocations

Estimate dislocation density ρ from broadening β (radians) & Burgers vector b (cm):

 $\rho = \beta^2 / 9 b^2$

Curvature

R = radius of curvature, s = beam diameter

angular broadening = s/R = $\delta \theta$

beam	radius	broadening
5 mm	100 m	10"

Relaxation

Need to measure misfit parallel to interface

Both mismatch & misorientation change on relaxation

Interplanar spacings change with mismatch distortion & relaxation – changes splittings

Relaxation

Need to measure misfit parallel to interface

Both mismatch & misorientation change on relaxation

So, also need misfit perpendicular to interface

Then, % relaxation is

$$R = \frac{a_1 - a_s}{a_1^R - a_s} \times 100$$

Relaxation

Grazing incidence

Incidence angle usually very low....~1-2°

Limits penetration of specimen

Relaxation

Grazing incidence

Incidence angle usually very low....~1-2°

Limits penetration of specimen

Penetration depth - G(x) = fraction of total diffracted intensity from layer x cm thick compared to infinitely thick specimen

 $G(x) = 1 - \exp\left(\frac{-2\mu\rho x}{\sin\theta}\right) = \frac{\text{intensity from a layer x cm thick}}{\text{intensity from an infinitely thick sample}}$

Penetration depth - G(x) = fraction of total diffracted intensity from layer x cm thick compared to infinitely thick specimen

$$G(x) = 1 - \exp\left(\frac{-2\mu\rho x}{\sin\theta}\right) = \frac{\text{intensity from a layer x cm thick}}{\text{intensity from an infinitely thick sample}}$$

Relaxation

Grazing incidence

Incidence angle usually very low....~1-2°

Reflection not from planes parallel to specimen surface

Relaxation

Grazing incidence

If incidence angle ~0.1-5° & intensity measured in symmetric geometry (incident angle = reflected angle),, get reflectivity curve

Relaxation

Need to measure misfit parallel to interface

Use grazing incidence e.g., (224) or (113)

Relaxation

Use grazing incidence e.g., (224) or (113)

Need to separate tilt from true splitting

Tilt effect reversed on rotation of $\phi = 180^{\circ}$

Mismatch splitting unchanged on rotation

Relaxation

Use grazing incidence e.g, (224) or (113)

For grazing incidence:

 $\Delta \Theta_{i} = \delta \Theta + \delta \phi$

 $\delta \theta = \theta$ splitting betwn substrate & layer

Relaxation

Use grazing incidence e.g, (224) or (113)

For grazing incidence:

 $\Delta \theta_{\rm ij} = \delta \theta + \delta \phi$

 $\Delta \theta_{\rm e} = \delta \theta - \delta \phi$

Can thus get both $\delta \theta$ and $\delta \phi$

Relaxation

Also,

$$\frac{4\sin^2\theta_{l}}{\lambda^2} = \frac{h^2 + k^2}{a_{l}^2} + \frac{l^2}{c_{l}^2}$$

$$\sec^2 \phi_i = \frac{c_i^2}{l^2} \left\{ \frac{h^2 + k^2}{a_i^2} + \frac{l^2}{c_i^2} \right\}$$

Relaxation

Also,

$$\theta_l = \theta_s + \delta\theta$$
$$\phi_l = \phi_s + \delta\phi$$

And

$$\frac{4\sin^2\theta_i}{\lambda^2} = \frac{h^2 + k^2}{a_i^2} + \frac{l^2}{c_i^2} \qquad \qquad \sec^2\phi_i = \frac{c_i^2}{l^2} \left\{ \frac{h^2 + k^2}{a_i^2} + \frac{l^2}{c_i^2} \right\}$$

Finally

$$c_{l} = \frac{l\lambda}{2\sin\theta_{l}\cos\phi_{l}} \qquad a_{l} = \frac{l\lambda}{2\sin\theta_{l}}\sqrt{\frac{h^{2}+k^{2}}{l^{2}}}$$

$$R = \frac{a_l - a_s}{a_l^R - a_s} \times 100$$

Homogeneity

Measure any significant parameter over a grid on specimen

Ex: compositional variation

get composition using Vegards law measure lattice parameter(s) – calculate relaxed mismatch

Homogeneity

Measure any significant parameter over a grid on specimen

Ex: variation of In content in InAIAs layer on GaAs

Thickness

For simple structure layer, layer peak integrated intensity increases monotonically w/ thickness

Specimen angle (arc seconds)

calculated curves

Thickness

For simple structure layer, layer peak integrated intensity increases monotonically w/ thickness

Note thickness fringes

Can use to estimate thickness

Specimen angle (arc seconds)

calculated curves

Thickness

For simple structure layer, layer peak integrated intensity increases monotonically w/ thickness

Specimen angle (arc seconds)

calculated curves