

# \*Phase transformation heat treatment

## Kinetics&Thermodynamics

- Branch of Chemistry that studies reaction rates and reaction mechanisms
- (i.e. how a reaction occurs, how fast it goes and the G changes that occur)

### Measure a reaction rate 2 ways

- The rate (speed) at which the reactant is consumed
- The rate (speed) at which the product is formed
- The rate is determined by the change in concentration per unit time
- Concentration is expressed in (M)olarity
  [HCl] = 0.5M

**Rate of Reaction and Collision Theory** In order for a chemical reaction to occur effective collisions must happen randomly between species so the bonds of the reactants can be broken and reformed into products.

Effective Collisions: result in breaking or forming a bond Species: Ions molecules or atoms

#### **Collisions are only effective if**

- they have enough kinetic energy to form products
- this minimum amount of kinetic energy is activation energy
  Energy percessary to start a reaction and the

Energy necessary to start a reaction and the molecules must be in the proper orientation

- During a chemical reaction . . .
- The effective collisions result in temporary unstable particles with high potential energy
- activated complexes



#### \*Activation Energy \*Activation energy is the energy needed to begin a reaction and break chemical bonds in the reactants.



# factors that determine the rate of reaction

- 1. The nature of the reactants
- 2. The temperature of the system
- 3. The concentration of the reactants

Increasing the pressure (GAS)

- 4. Surface area of the reactants
- 5. The use of a catalyst

#### **Nature of the Reactants**

Reactions between *ionic* substances happen very quickly

- •Reactions between *covalent* substances tend to happen slowly
- Solutions (aq)react faster than solids
- •Liquids react faster than solids

#### **Temperature of Reactants**

- •Usually, an increase in temp. increases the rate chemical reactions WHY?
- •If you increase temperature of the system, the KE of the particles increases, and *effective collisions are going to happen more often*

#### **Concentration of Reactants**

•An increase in the concentration of the reactants will increase the rate of reaction BECAUSE . . . *effective collisions are going to happen more frequently* 

#### **Increasing GAS concentration**

- Increasing pressure will increase the rate of reaction IF at least one of the reactants is a gas .... WHY?
- the molecules move closer together

increasing the number of effective collisions





Decreased pressure

Increased pressure

#### **Surface Area and Reaction Rate**

•Increasing the surface area of the reactants will increase the rate of reactions



Increased surface area allows more of the reactant to be exposed . more *effective collisions* to happen

**Potential Energy** Diagrams PE is stored in the bonds of a substance. Using PE diagrams we can study the THERMODYNAMICS of substances involved in reactions.

### Enthalpy and ΔH

•The change in PE of a reaction is called Enthalpy •Enthalpy is measured by  $\Delta H$  $\Delta H = H(products) - H(reactants)$