Hardenability

- We have seen the advantage of getting martensite, M. We can temper it, getting TM with the best combination of ductility and strength.
- But the problem is this: getting M in depth, instead of just on the surface.
- The ability to get M in depth for low cooling rates is called hardenability.

Hardenability

- Hardenability is the ability of Fe-C alloy to harden by forming martensite
- Hardenability (not "hardness"): Qualitative measure of rate at which hardness decreases with distance from surface due to decreased martensite content
- High hardenability means the ability of the alloy to produce a high martensite content throughout the volume of specimen

Application of Hardenability

- □ Jominy test –Hardenability measured by Jominy endquench test performed for standard cylindrical specimen, standard austenitization conditions, and standard quenching conditions (jet of water at specific flow rate and temperature).
- The test used to evaluate hardenability. An austenitized steel bar is quenched at one end only, thus producing a range of cooling rates along the bar.
- □ Hardenability curves Graphs showing the effect of the cooling rate on the hardness of as-quenched steel.
- Jominy distance The distance from the quenched end of a Jominy bar. The Jominy distance is related to the cooling rate.

Hardenability -Steels

- Ability to form martensite
- Jominy end quench test to measure hardenability.

WHY HARDNESS CHANGES W/POSITION

• The cooling rate varies with position.

Isothermal Transformation and Cooling Transformation Diagrams,

Influence of Quenching Medium, Specimen Size, and Geometry on Hardenability

- •Quenching medium: Cools faster in water than air or oil. Fast cooling \rightarrow warping and cracks, since it is accompanied by large thermal gradients
- •Shape and size: Cooling rate depends upon extraction of heat to surface. Greater the ratio of surface area to volume, deeper the hardening effect
- Spheres cool slowest, irregular objects fastest.

Quenching Medium & Geometry

• Effect of quenching medium:

Medium	Severity of Quench	Hardness
air	small	small
oil	moderate	moderate
water	large	large

Effect of geometry:

When surface-to-volume ratio increases:

- --cooling rate increases
- --hardness increases

Factors Which Improve Hardenability

- 1. Austenitic Grain size. The Pearlite will have an easier time forming if there is a lot of g.b. area. Hence having a large austenitic grain size improves hardenability.
- 2. Adding alloys of various kinds. This impedes the $\gamma \rightarrow$ P reaction. After Adding 2.0% Mo

The hardenability of a steel depends on

- (1) the composition of the steel,
- (2) the austenitic grain size, and
- (3) the structure of the steel before quenching.

Hardenability Curve

Quenched end cools most rapidly, contains most martensite

Cooling rate decreases with distance from quenched end: greater C diffusion, more pearlite/bainite, lower hardness

The hardenability curves for several steels.

Jominy end-quench test of Hardenability

Hardenability curve is the dependence of hardness on distance from the quenched end.

Jominy Distance (in.)	Cooling Rate (°C/s)
$\frac{1}{16}$	315
$\frac{2}{16}$	110
$\frac{3}{16}$	50
$\frac{4}{16}$	36
5 16	28
6 16	22
7 16	17
8 16	15
10 16	10
12 16	8
16 16	5
<u>20</u> 16	3
<u>24</u> 16	2.8
<u>28</u> 16	2.5
<u>36</u> 16	2.2

TABLE 12-3The relationship between coolingrate and Jominy distance