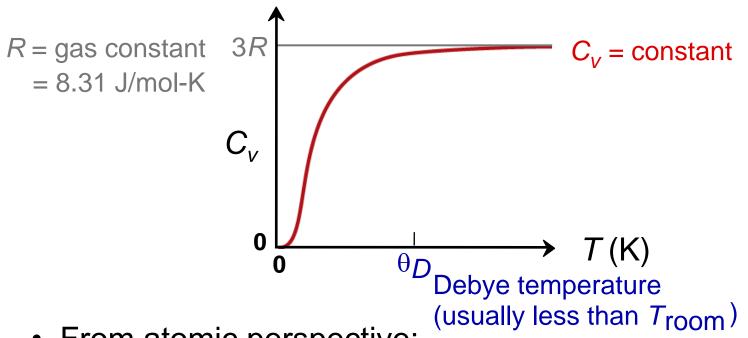
Thermal conductivity

Dr. Aseel Basim

Heat Capacity The ability of a material to absorb heat

 Quantitatively: The energy required to produce a unit rise in temperature for one mole of a material.

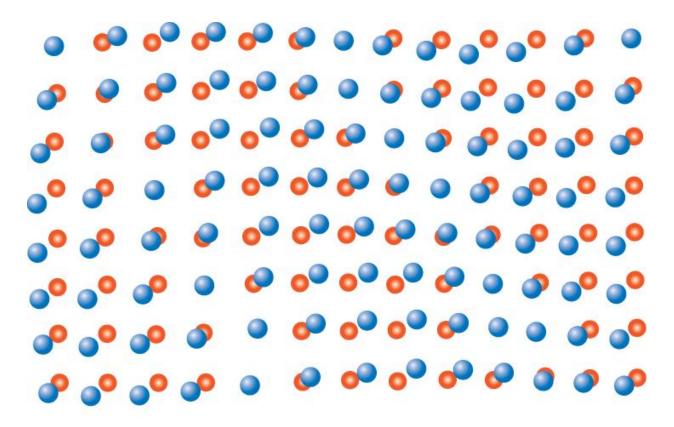
heat capacity
$$C = \frac{dQ}{dT}$$
 energy input (J/mol)
(J/mol-K)


- Two ways to measure heat capacity:

 - C_p : Heat capacity at constant pressure. C_v : Heat capacity at constant volume.

 C_p usually > C_v

Dependence of Heat Capacity on Temperature


- Heat capacity...
 - -- increases with temperature
 - -- for solids it reaches a limiting value of 3R

- From atomic perspective:
 - -- Energy is stored as atomic vibrations.
 - -- As temperature increases, the average energy of atomic vibrations increases.

Atomic Vibrations

Atomic vibrations are in the form of lattice waves or phonons

Normal lattice positions for atoms

Positions displaced because of vibrations

Specific Heat: Comparison

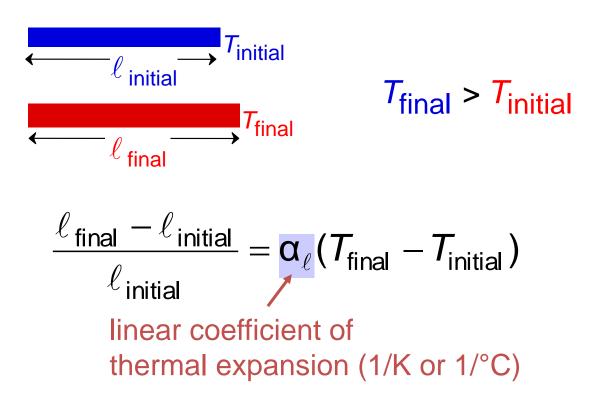
Polymers Polypropylene Polyethylene Polystyrene Teflon

Material

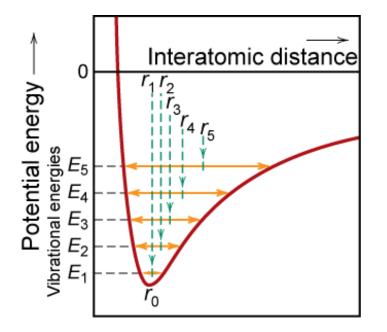
 c_p (J/kg-K) at room T

1925

1850

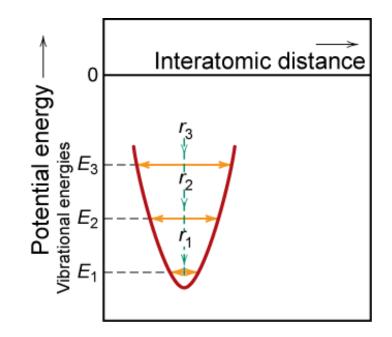

1170

1050


 c_{D} (specific heat): (J/kg-K) C_p (heat capacity): (J/mol-K)

 <u>Ceramics</u> Magnesia (MgO) Alumina (Al₂O₃) Glass 	940 775 840
 <u>Metals</u> 	
Aluminum	900
Steel	486
Tungsten	138
Gold	128

Thermal Expansion Materials change size when temperature is changed



Atomic Perspective: Thermal Expansion

Asymmetric curve:

- -- increase temperature,
- -- increase in interatomic departure
- -- thermal expansion

Symmetric curve:

- -- increase temperature,
- -- no increase in interatomic departure
- -- no thermal expansion

Coefficient of Thermal Expansion: Comparison

Material

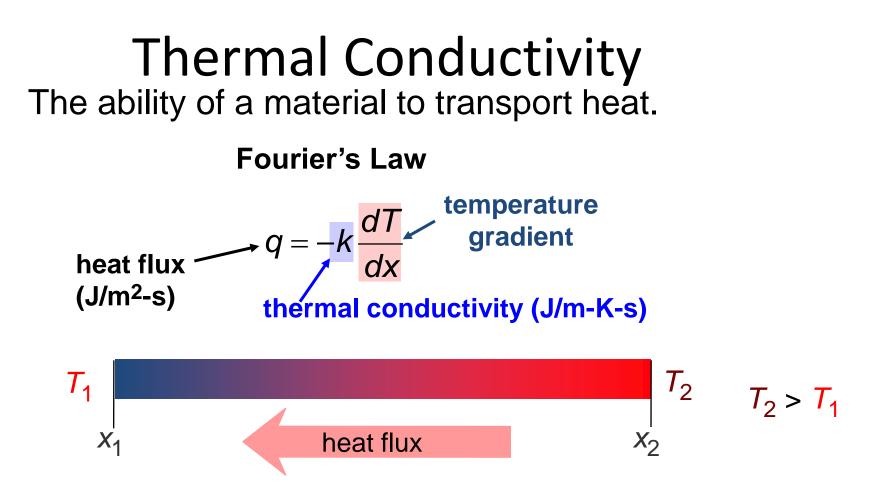
 $\alpha_{
ho}$

increasing

•	Polymers
	Polypropylene
	Polyethylene
	Polystyrene
	Teflon

 <u>Metals</u> 	
Aluminum	23.6
Steel	12
Tungsten	4.5
Gold	14.2

 α_{ℓ} (10⁻⁶/°C) at room *T*


145-180

106-198

90-150

126-216

Polymers have larger α_ℓ values because of weak secondary bonds

• Atomic perspective: Atomic vibrations and free electrons in hotter regions transport energy to cooler regions.

Thermal Conductivity: Comparison

	Material	<i>k</i> (W/m-K)	Energy Transfer Mechanism
	 <u>Metals</u> Aluminum Steel Tungsten Gold 	247 52 178 315	atomic vibrations and motion of free electrons
ncreasing <i>k</i>	• <u>Ceramics</u> Magnesia (MgO) Alumina (Al ₂ O ₃) Soda-lime glass Silica (cryst. SiO ₂	38 39 1.7) 1.4	atomic vibrations
Ü	 <u>Polymers</u> Polypropylene Polyethylene Polystyrene Teflon 	0.12 0.46-0.50 0.13 0.25	vibration/rotation of chain molecules

Thermal Stresses

- Occur due to:
 - -- restrained thermal expansion/contraction
 - -- temperature gradients that lead to differential dimensional changes

Thermal stress $= \sigma$

$$= E\alpha_{\ell}(T_0 - T_f) = E\alpha_{\ell}\Delta T$$

Thermal Shock Resistance

- Occurs due to: nonuniform heating/cooling
- Ex: Assume top thin layer is rapidly cooled from T_1 to T_2 rapid quench

 T_1

σ

 $\leftarrow \Box \rightarrow Tension develops at surface$

 $\sigma = -E\alpha_{\ell}(T_1 - T_2)$

Temperature difference that can be produced by cooling: $(T_1 - T_2) = \frac{\text{quench rate}}{\nu}$

tries to contract during cooling

resists contraction

Critical temperature difference for fracture (set $\sigma = \sigma_f$)

$$\frac{(T_1 - T_2)_{\text{fracture}}}{f} = \frac{\sigma_f}{E\alpha_\ell}$$

set equal

• (quench rate)_{for fracture} = Thermal Shock Resistance TSR) $\propto \frac{\sigma_f K}{E\alpha_s}$

Summary

The thermal properties of materials include:

- Heat capacity:
 - -- energy required to increase a mole of material by a unit T
 - -- energy is stored as atomic vibrations
- Coefficient of thermal expansion:
 - -- the size of a material changes with a change in temperature
 - -- polymers have the largest values
- Thermal conductivity:
 - -- the ability of a material to transport heat
 - -- metals have the largest values
- Thermal shock resistance:
 - -- the ability of a material to be rapidly cooled and not fracture

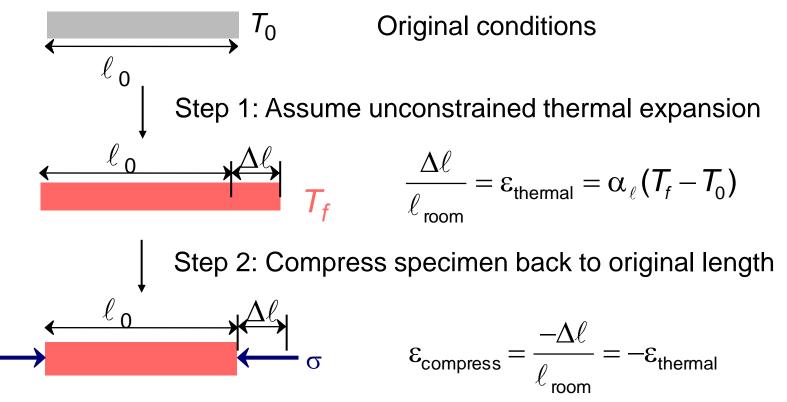
-- is proportional to
$$\frac{\sigma_f k}{E \alpha_g}$$

Example

- Ex: A copper wire 15 m long is cooled from 40 to -9°C. How much change in length will it experience?
- Answer: For Cu $\alpha_{\ell} = 16.5 \times 10^{-6} (^{\circ}C)^{-1}$

rearranging Equation 17.3b

 $\Delta \ell = \alpha_{\ell} \ell_{0} \Delta T = [16.5 \times 10^{-6} (1/^{\circ}C)](15 \text{ m})[40^{\circ}C - (-9^{\circ}C)]$


 $\Delta \ell = 0.012 \, m = 12 \, mm$

Example2

- -- A brass rod is stress-free at room temperature (20°C).
- -- It is heated up, but prevented from lengthening.
- -- At what temperature does the stress reach -172 MPa?

Solution:

σ

