Phase Diagrams

- When we combine two elements... what equilibrium state do we get?
- In particular, if we specify...
 - --a composition (e.g., wt% Cu wt% Ni), and --a temperature (7)

then...

How many phases do we get?

What is the composition of each phase?

How much of each phase do we get?

Phase Equilibria

Simple solution system (e.g., Ni-Cu solution)

	Crystal Structure	electroneg	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally miscible in all proportions.

Phase Diagrams

- Indicate phases as function of *T*, *C*₀, and *P*.
- For this course:

-binary systems: just 2 components.

-independent variables: T and C_O (P = 1 atm is almost always used).

Phase Diagrams: # and types of phases

• Rule 1: If we know *T* and *C_o*, then we know: --the # and types of phases present.

Phase Diagrams: composition of phases

- Rule 2: If we know *T* and *C*₀, then we know: --the composition of each phase.
- Examples:

 $C_{O} = 35 \text{ wt\% Ni}$ At $T_{A} = 1320^{\circ}\text{C}$: Only Liquid (L) $C_{L} = C_{O}$ (= 35 wt% Ni) At $T_{D} = 1190^{\circ}\text{C}$: Only Solid (α) $C_{\alpha} = C_{O}$ (= 35 wt% Ni) At $T_{B} = 1250^{\circ}\text{C}$:

Both α and L $C_L = C$ liquidus (= 32 wt% Ni here) $C_{\alpha} = C$ solidus (= 43 wt% Ni here)

Adapted from Fig. 9.3(b), *Callister 7e.*(Fig. 9.3(b) is adapted from *Phase Diagrams* of *Binary Nickel Alloys*, P. Nash (Ed.), ASM
International, Materials Park, OH, 1991.)

Phase Diagrams: weight fractions of phases

- Rule 3: If we know *T* and *C*₀, then we know: --the amount of each phase (given in wt%).
- Examples: $C_{O} = 35 \text{ wt\% Ni}$ At T_A : Only Liquid (L) $W_{I} = 100 \text{ wt\%}, W_{\alpha} = 0$ At T_D : Only Solid (α) $\mathcal{W}_{\prime} = 0, \ \mathcal{W}_{\alpha} = 100 \text{ wt\%}$ At T_B : Both α and L $W_L = \frac{S}{R+S} = \frac{43-35}{43-32} = 73 \text{ wt\%}$ = 27 wt% $W_{\alpha} = \frac{1}{D}$

Adapted from Fig. 9.3(b), *Callister 7e.* (Fig. 9.3(b) is adapted from *Phase Diagrams of Binary Nickel Alloys*, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

The Lever Rule

• Tie line – connects the phases in equilibrium with each other - essentially an isotherm

How much of each phase? Think of it as a lever (teeter-totter)

 $M_{\alpha} \cdot S = M_L \cdot R$

Ex: Cooling in a Cu-Ni Binary

- Phase diagram: Cu-Ni system.
- System is:

 --binary
 i.e., 2 components:
 ^α Cu and Ni.
 - --isomorphous

i.e., complete solubility of one component in another; α phase field extends from 0 to 100 wt% Ni.

Consider

 $C_0 = 35 \text{ wt\%Ni}.$

Mechanical Properties: Cu-Ni System

• Effect of solid solution strengthening on:

--Tensile strength (*TS*) --Ductility (%*EL*,%*AR*)

EX: Pb-Sn Eutectic System (1)

EX: Pb-Sn Eutectic System (2)

Microstructures in Eutectic Systems: I

- *C*₀ < 2 wt% Sn
- Result:
 - --at extreme ends --polycrystal of α grains i.e., only one solid phase.

Callister 7e.

Microstructures in Eutectic Systems: II

Microstructures in Eutectic Systems: III

- $C_o = C_E$
- Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals.

Lamellar Eutectic Structure

Adapted from Figs. 9.14 & 9.15, *Callister 7e.*

Microstructures in Eutectic Systems: IV

- 18.3 wt% Sn < C_0 < 61.9 wt% Sn
- Result: α crystals and a eutectic microstructure

Hypoeutectic & Hypereutectic

Eutectoid

• Eutectic - liquid in equilibrium with two solids

$$\mathcal{L} \stackrel{\text{cool}}{\overline{\text{heat}}} \alpha + \beta$$

 Eutectoid - solid phase in equation with two solid phases

$$S_2 \implies S_1 + S_3$$

 $\gamma \stackrel{\text{cool}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}{\stackrel{\text{heat}}}}}$

Iron-Carbon (Fe-C) Phase Diagram

 2 important 1600 points -Eutectic (A): 1400 $L \Rightarrow \gamma + Fe_3C$ 1200 -Eutectoid (B): (austenite) $\gamma \Rightarrow \alpha + Fe_3C$ 1000 800 6.2 400 (Fe) 0.76 120 µm Result: Pearlite = alternating layers of α and Fe₃C phases

(Adapted from Fig. 9.27, Callister 7e.)

Adapted from Fig. 9.33, Callister 7e.

Example: Phase Equilibria

- For a 99.6 wt% Fe-0.40 wt% C at a temperature just below the eutectoid, determine the following
- a) composition of Fe_3C and ferrite (α)
- b) the amount of carbide (cementite) in grams that forms per 100 g of steel
- c) the amount of pearlite and proeutectoid ferrite (α)

Phase Equilibria

Solution: a) composition of Fe_3C and ferrite (α)

Chapter 9 – Phase Equilibria

c. the amount of pearlite and proeutectoid ferrite (α) note: amount of pearlite = amount of γ just above T_E

Alloying Steel with More Elements

• *T*_{eutectoid} changes:

Adapted from Fig. 9.34, *Callister 7e.* (Fig. 9.34 from Edgar C. Bain, *Functions of the Alloying Elements in Steel*, American Society for Metals, 1939, p. 127.)

• *C*_{eutectoid} changes:

Adapted from Fig. 9.35, *Callister 7e*. (Fig. 9.35 from Edgar C. Bain, *Functions of the Alloying Elements in Steel*, American Society for Metals, 1939, p. 127.)

Summary

- Phase diagrams are useful tools to determine:
 - --the number and types of phases,
 --the wt% of each phase,
 --and the composition of each phase
 for a given *T* and composition of the system.
- Alloying to produce a solid solution usually

 --increases the tensile strength (*TS*)
 --decreases the ductility.
- Binary eutectics and binary eutectoids allow for a range of microstructures.