Biomechanics

Third Stage/ Biomaterials Engineering and prosthesis Branch

Presented By

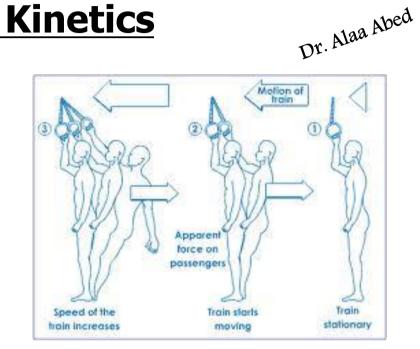
Assist .Prof. Dr.Alaa A. Mohammed

Lecture Two

Dr. Alaa Abed

Kinetic Analysis

Inertia:


- tendency to resist change in state of motion
- proportional to mass
- has no units!

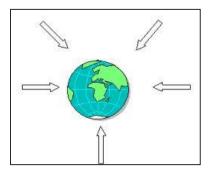
Mass:

- quantity of matter composing a body
- represented by m
- units are kg or slug

center of gravity:

- point around which a body's weight is equally balanced in all directions.
- point that serves as an index of total body motion.
- point at which the weight vector acts same as the center of mass.

Force:


- a push or a pull
- characterized by magnitude, direction, and point of application
- F = ma
- unit is the Newton (N) in metric system
- Units of force are units of mass multiplied by units of acceleration, e.g.,
 - $1 \text{ N} = 1 \text{ kg} \cdot 9.8 \text{ m/s}^2$
 - 1 lb = 1 slug · 32 ft/s²
 - Slug is much larger

Weight:

- attractive force that the earth exerts on a body
- wt. = mg (product of mass and the acceleration of gravity: -9.81 m/s² or -32.2 ft/s²)

Dr. Alaa Abed

Pressure:

- force per unit of area over which the force acts
- commonly used to describe force distribution within a fluid (e.g. blood pressure, water pressure, air pressure but not barometric)

 Units of pressure are units of force divided by units of area, e.g.,
P = F/A

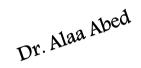
$$Lb/in^2$$
 (psi)
Deceal – N/m²

$$Pascal = N/m^2$$

Impulse:

- the product of force and the time during which the force acts (Ft)
- units are Ns

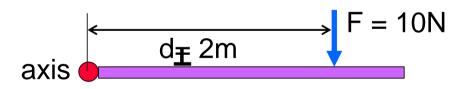
Volume:


- space occupied by a body
- has three dimensions (width, height, and depth)
- units are m³ and cm³ and liters (=1000 cm³) or ft³ and in³

Density:

- mass per unit of volume
- \bullet represented with the small Greek letter rho: ρ
- units are kg/m³ or kg/l or g/cc

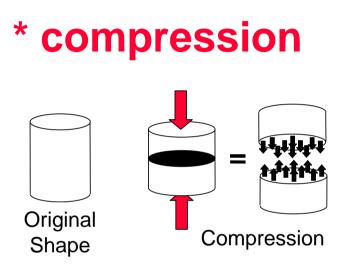
specific weight:


- weight per unit of volume
- \bullet represented with the Greek letter gamma: γ
- units are N/m³

a torque:

- the rotary effect of a force
- the angular equivalent of force
- also known as moment of force

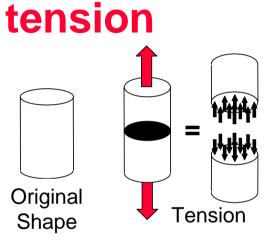
For example:



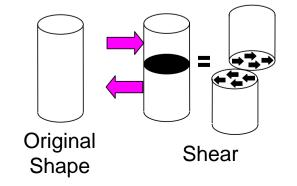
 $T = Fd^{\perp}$ (the product of force and the perpendicular distance from the force's line of action to the axis of rotation)

<u>Common Units for Kinetic Quantities</u>

Quantity	Symbol	Metric Unit	English Unit
Mass	m	kg	slug
Force	F	Ν	lb
Pressure	Р	Ра	psi
Volume (solids)	V	m ³	ft ³
(liquids)		liter	gallon
Density	ρ	kg/m³	lb/ft ³
Specific weight	γ	N/m ³	lb/ft ³
Torque	т	N∙m	ft·lb
Impulse	J	N·s	ft·s


Dr. Alaa Abed

(pressing or squeezing force directed axially through a body)



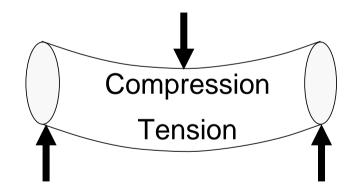
(pulling or stretching force directed axially through a body)

*shear

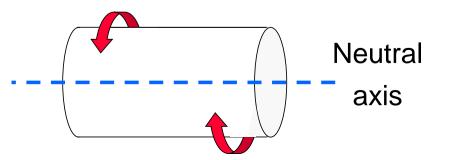
(force directed parallel to a surface)

Mechanical Loads

Stress:

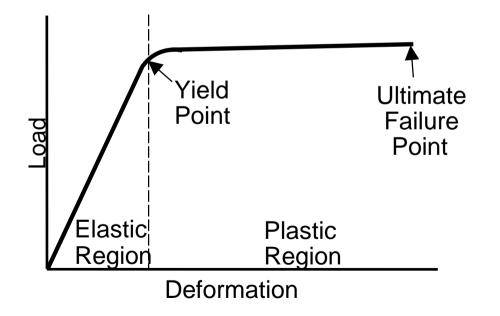

- force per unit of area over which the force acts
- commonly used to describe force distribution within a body
- units are N/m²

Bending:

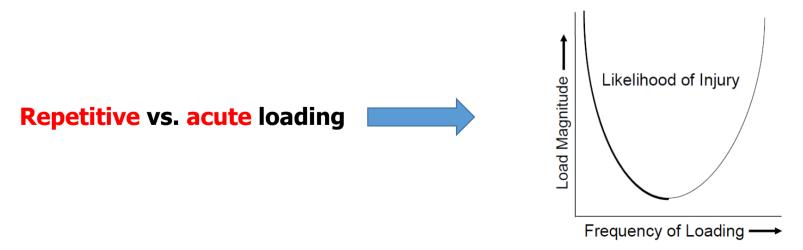

(asymmetric loading that produces tension on one side of a body's longitudinal axis and compression on the other side)

Torsion:

(load producing twisting of a body around its longitudinal axis)


Dr. Alaa Abed

Effects of Loading



Effects of Loading

Dr. Alaa Abed

• **repetitive:** repeated application of a subacute load that is usually of relatively low magnitude. For example, each time a foot hits the pavement during running, a force of approximately two to three times body weight is sustained. Although a single force of this magnitude is not likely to result in a fracture of healthy bone, numerous repetitions of such a force may cause a fracture of an otherwise healthy bone somewhere in the lower extremity.

• **acute**: application of a single force of sufficient magnitude to cause injury to a biological tissue. For example, The force produced by a fall, a rugby tackle, or an automobile accident may be sufficient to fracture a bone.

Tools for Measuring Kinetic Quantities

Electromyography (EMG)

• To study neuromuscular function.

Dynamography

- Force and pressure platforms interfaced with computer measure ground reaction forces.
- Primarily employed in gait research, starts, takeoffs, landings, baseball & golf swings, and balance

The End of Lecture