Biomechanics

Third Stage/ Biomaterials Engineering and prosthesis Branch

Presented By

Assist .Prof. Dr.Alaa A. Mohammed

<u>Lecture Four</u> <u>Movement Analysis</u> <u>Levers</u>

Levers- The basics

The Law of the Lever

The cross product of force and distance is **torque**. The cross product is the mathematical process between two vectors that results in a vector perpendicular to both of the initial vectors. The **law of the lever** is also known as the law of moments and equates clockwise torques and counterclockwise torques. The equation here shows the law of levers:

$$F_1d_1=F_2d_2$$

Where:

F1: is force1 (load).

d1 : is the distance from the fulcrum to force 1 is applied.

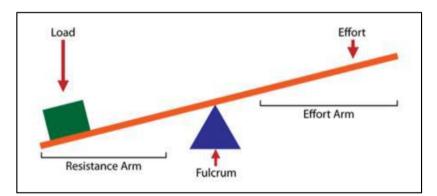
F2 : is force 2 (effort).

d2 : is the distance from the fulcrum to force 2 is produced.

Dr. Alaa Abed

- Mechanical advantage measures the efficiency of a lever (how easy it is to lift the load).
- The mechanical advantage of levers may be determined using the following equations:

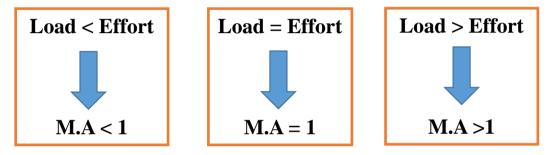
$$Mechanical advantage = \frac{Load (resistance)}{Effort (force)}$$


$$Or$$

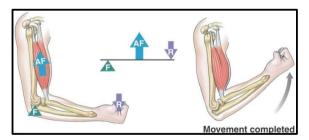
 $Mechanical advantage = \frac{Length of force (arm)}{Length of resistance (arm)}$

It has <u>no unit</u>

Dr. Alaa Abed


The advantage depends on the distance between the effort and the fulcrum (effort arm) compared with the distance between the load (resistance) and the fulcrum (resistance arm).

Resistance arm = Distance between the **Load** and the **fulcrum**. **Effort arm** = Distance between the **effort** and the **fulcrum**.


Dr. Alaa Abed

Mechanical Advantage has three value :

* Mechanical advantage – Rule 1

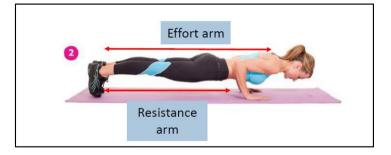
When the effort arm is shorter than it's load arm it has a low mechanical advantage.
A short effort arm allows fast movement of the load over a large range of movement.
Third class levers always have a low mechanical advantage E.g. Bicep curl, rowing

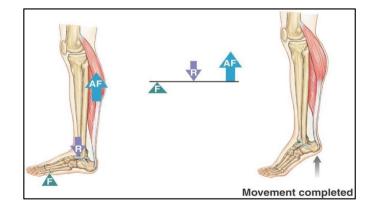
Dr. Alaa Abed

Examples from sport

- Third and most 1st class lever have a **shorter effort arm** and longer resistance arm. This means a wide **range of movement** is produced and movements are done at higher **speed**.

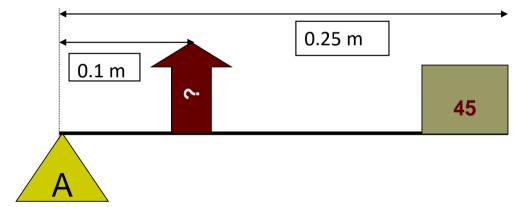
✤ Mechanical advantage –Rule 2


- When the **effort** arm is **longer** than it's **load** arm it has a **high** mechanical advantage.
- -This means heavy loads can be lifted with little effort.
- Second class levers always have a high mechanical advantage


Examples from sport

E.g. Standing on tip toes, or performing a press up.

- The gastrocnemius can easily create enough force to move the whole weight of the body upwards.



Exercises

Ex.1: For the following figure how much force needs to be produced to move 45 kg when the length of resistance arm is 0.25 m and the length of effort arm is 0.1 m? With explain the class of this lever?
Solution: Third class lever

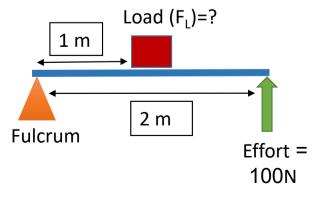
Dr. Alaa Abed

 $F_1d_1 = F_2 d_2$

 $45*0.25=F_2*0.1$ F₂ = 112.5 Kg

Ex.2: for the following figure find the following:

- 1. Fulcrum, Effort, Load.
- 2. The class of lever.
- 3. if the force produced was 100 N calculated the force applied with take the distance as following =1m and =2m ?
- 4. calculated the mechanical advantage?


Solution:

- 1. Fulcrum= Ankle joint Effort= Gastrocnemius Load= Body
- 2. Second class lever

3.
$$F_L * d_L = F_e * d_e$$

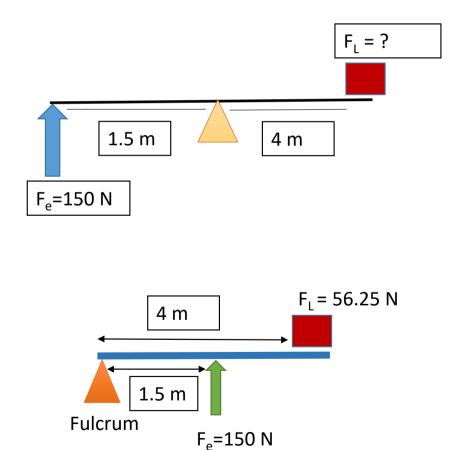
 $F_1 * 1 = 100 * 2$ $F_1 = 200 N$

4. M. A = $\frac{\text{Length of Force}}{\text{Length of Resistance}}$

$$M.A = \frac{2 m}{1 m} = 2$$

<u>Ex.3</u>: for the following figure find F_e and explain the class of lever? Dr. Maa Abed

Solution: $F_{L} = 150 N$ $M.A. = \frac{\text{length of force(effort)}}{\text{length of resistance (load)}}$ 4.6 m 2.2 m M. A. = $\frac{4.6 \text{ m}}{2.2 \text{ m}}$ =2.1 (Second class lever) $F_e = ?$ $[F_{L}*d_{L}=F_{e}*d_{e}] \div d_{L}$ Load (F₁)=150 N $[F_L = M.A. *Fe] \div M.A.$ 2.2 m $Fe = \frac{F_L}{M_1A_1} = 71.4 N$ 4.6 m Fulcrum Effort


=71.4 N

<u>Ex.4</u>: for the following figure find F_L and explain the class of lever? Dr. Alaa Abed <u>Solution:</u>

$$M.A. = \frac{\text{length of force(effort)}}{\text{length of resistance (load)}}$$

M.A. = $\frac{1.5}{4}$ = 0.375 M.A. < 1 third class lever [F_L*d_L=F_e*d_e] ÷ d_L F_L=M.A. *Fe F_L= 0.375 *150

 $F_L = 56.25 \text{ N}$

The End of Lecture