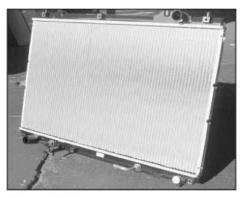
INTRODUCTION TO THERMODYNAMICS By Assist. Prof. Dr. Kadhum Muttar

INTRODUCTION

- Thermodynamics: Science of energy
- Greek words: *therme* (heat) and *dynamics* (power)
- Energy can change from one form to another

Energy cannot be created nor destroyed


The human body

Air conditioning systems

Airplanes

Car radiators

Power plants

Refrigeration systems

FIGURE 1-5

Some application areas of thermodynamics.

A/C unit, fridge, radiator: © The McGraw-Hill Companies, Inc./Jill Braaten, photographer; Plane: © Vol. 14/PhotoDisc; Humans: © Vol. 121/PhotoDisc; Power plant: © Corbis Royalty Free

Dimensions and units

The seven fundamental (or primary) dimensions and their units in SI	
Dimension	Unit
Length	meter (m)
Mass	kilogram (kg)
Time	second (s)
Temperature	kelvin (K)
Electric current	ampere (A)
Amount of light	candela (cd)
Amount of matter	mole (mol)

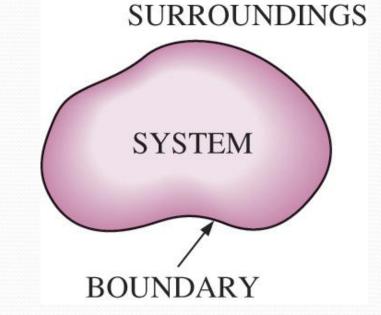
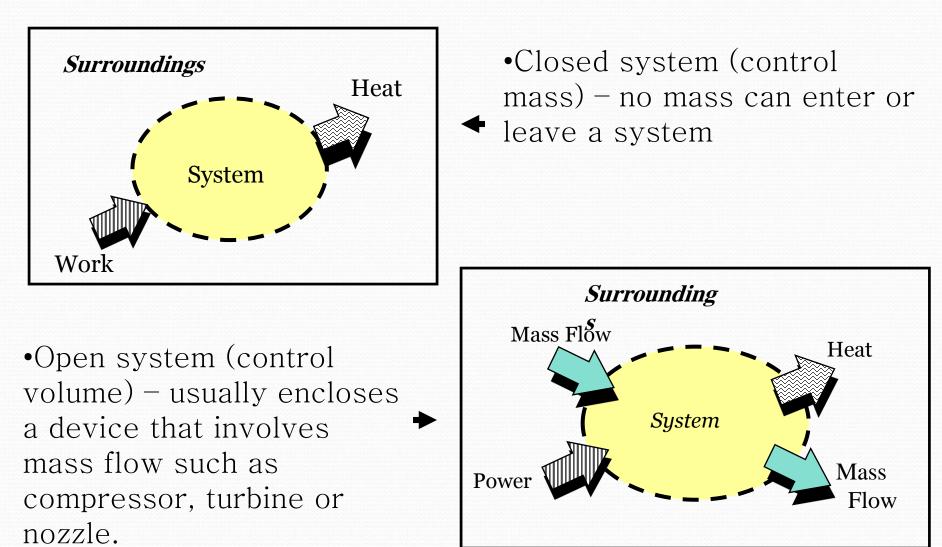
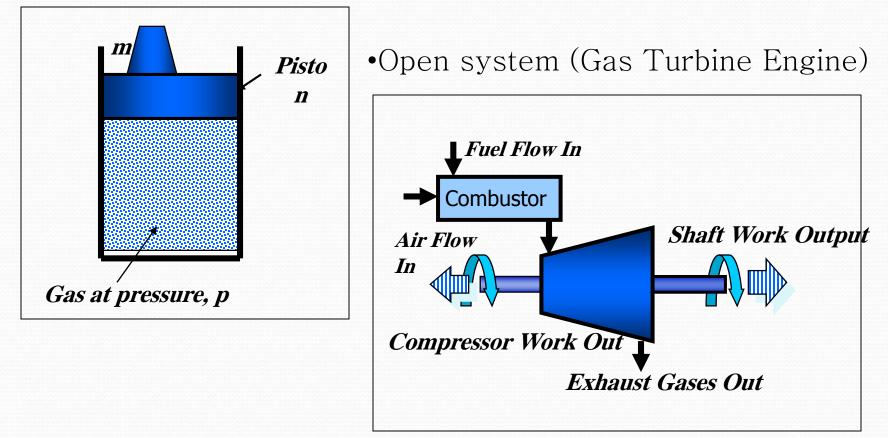

Standard prefixes in SI units	
Multiple	Prefix
1012	tera, T
10 ⁹	giga, G
10 ⁶	mega, M
10 ³	kilo, k
102	hecto, h
10 ¹	deka, da
10-1	deci, d
10-2	centi, c
10-3	milli, m
10-6	micro, µ
10-9	nano, n
10-12	pico, p

Table A.1: Conversion Factors

Quantity	Conversion
Length	1 m = 100 cm = 3.28084(ft) = 39.3701(in)
Mass	$1 \text{ kg} = 10^3 \text{ g}$ = 2.20462(lbm)
Force	$1 N = 1 kg m s^{-2}$ = 10 ⁵ (dyne) = 0.224809(lb _f)
Pressure	1 bar = 10^5 kg m ⁻¹ s ⁻² = 10^5 N m ⁻² = 10^5 Pa = 10^2 kPa = 10^6 (dyne) cm ⁻² = 0.986923 (atm) = 14.5038 (psia) = 750.061 (torr)
Volume	$1 m^{3} = 10^{6} cm^{3} = 10^{3} liters$ = 35.3147(ft) ³ = 264.172(gal)
Density	$1 \text{ g cm}^{-3} = 10^3 \text{ kg m}^{-3}$ = 62.4278(lb _m)(ft)^{-3}
Energy	$\begin{split} 1 & J = 1 \text{ kg m}^2 \text{ s}^{-2} = 1 \text{ N m} \\ &= 1 \text{ m}^3 \text{ Pa} = 10^{-5} \text{ m}^3 \text{ bar} = 10 \text{ cm}^3 \text{ bar} \\ &= 9.86923 \text{ cm}^3(\text{atm}) \\ &= 10^7(\text{dyne}) \text{ cm} = 10^7(\text{erg}) \\ &= 0.239006(\text{cal}) \\ &= 5.12197 \times 10^{-3}(\text{ft})^3(\text{psia}) = 0.737562(\text{ft})(\text{lb}_f) \\ &= 9.47831 \times 10^{-4}(\text{Btu}) = 2.77778 \times 10^{-7} \text{ kWhr} \end{split}$
Power	$1 \text{ kW} = 10^3 \text{ W} = 10^3 \text{ kg m}^2 \text{ s}^{-3} = 10^3 \text{ J s}^{-1}$ = 239.006(cal) s ⁻¹ = 737.562(ft)(lb _f) s ⁻¹ = 0.947831(Btu) s ⁻¹ = 1.34102(hp)


System and Surroundings

- **System** quantity of matter or region in space chosen for study
- Surroundings mass or region outside the system
- Boundary surface separate system from surrounding (imaginary @ real)

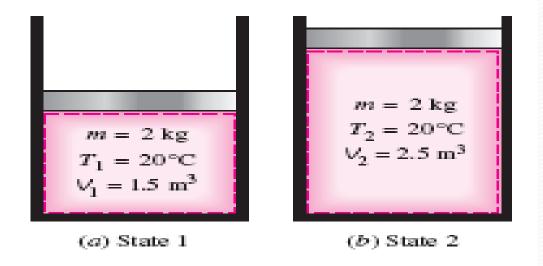

Types of Thermodynamics System

- Closed system
- Open system

Example of Open System & Closed System...

•Closed system (Piston and Cylinder)

Properties of Thermodynamics System


- Any characteristic of a system is called a property
- *E.g: P, T, V, m*, viscosity, thermal conductivity, thermal expansion coefficient, velocity etc.
- Properties are consider to be either intensive or extensive.
- Intensive properties those that are independent of the size of the system: temperature, pressure and density
- Extensive properties those whose values depend on the size or extent of the system: mass, volume and total energy

Reversible & Irreversible Process

- **Process**: system undergoes from one equilibrium state to another.
- **Reversible**: Process that can be reversed without leaving any trace on the surrounding
 - eg: Pendulum
 - System and surrounding return to their initial state.
- Irreversible: Surrounding do some work on the system & therefore does not return to their initial state.
- eg: hot coffee

State of System

- State of system: a set of properties that completely describes the system condition
- If the value of even one properties changes, the state will change to a different one

Thermodynamics Equilibrium

- Equilibrium: no changes
- *Thermodynamic equilibrium* refers to particular states of a macroscopic system, called equilibrium states, which are independent of time (stationary states) and in which no macroscopic flow of any physical quantity exists.

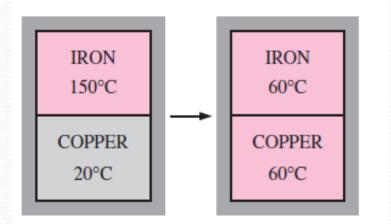
Thermal Equilibrium

• Temperature is the same throughout the entire system

Mechanical Equilibrium

• (Related to pressure): a system is in mechanical equilibrium if there is no change in pressure at any point of the system with time.

Phase Equilibrium


• **Phase equilibrium**: If a system involves two phases, it is in phase equilibrium when the mass of each phase reaches an equilibrium level and stays there.

Chemical Equilibrium

• Chemical composition does not change with time, that is, no chemical reactions occur.

The Zeroth Law of Thermodynamics

The **zeroth law of thermodynamics** states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other.

Temperature Scales

 $T(K) = T(^{\circ}C) + 273.15$ T(R) = 1.8T(K)

 $T(R) = T(^{\circ}F) + 459.67$ $T(^{\circ}F) = 1.8T(^{\circ}C) + 32$

Forms of Energy

Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential, electric, magnetic, chemical, and nuclear, and their sum constitutes the **total energy** E of a system.

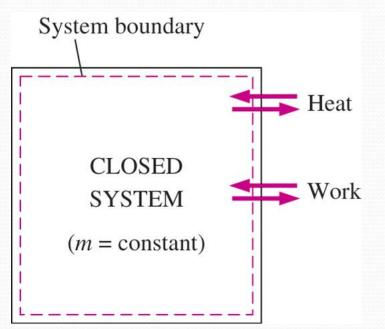
In thermodynamic analysis, it is often helpful to consider the various forms of energy that make up the total energy of a system in two groups: *macroscopic* and *microscopic*.

The **macroscopic** forms of energy are those a system possesses as a whole with respect to some outside reference frame, such as kinetic and potential energies

The macroscopic energy of an object changes with velocity and elevation.

The macroscopic energy of a system is related to motion and the influence of some external effects such as gravity, magnetism, electricity, and surface tension. The energy that a system possesses as a result of its motion relative to some reference frame is called **kinetic energy** (KE). $KE = m \frac{V^2}{2}$ (kJ)

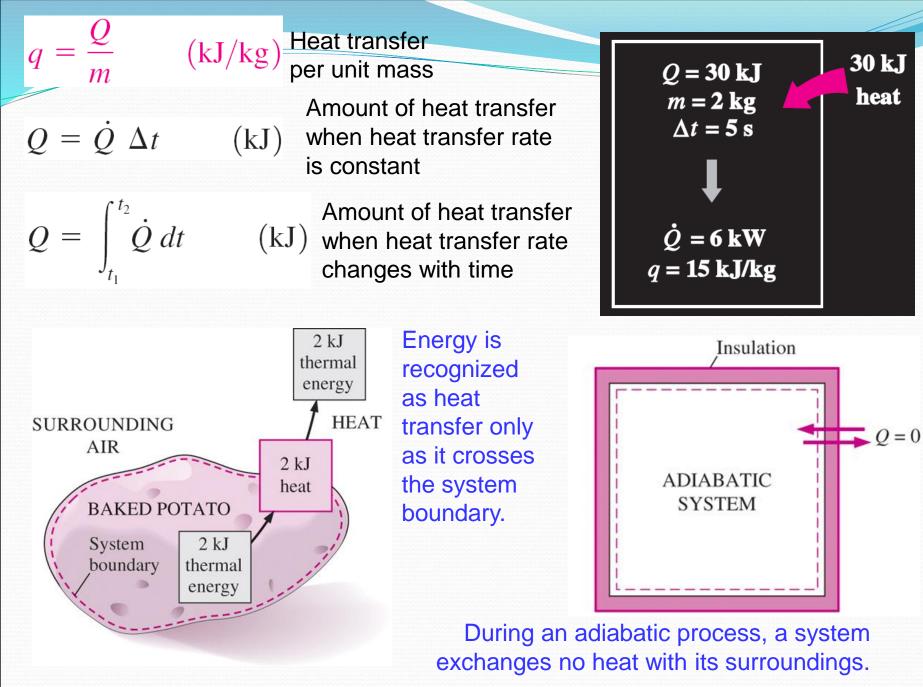
The energy that a system possesses as a result of its elevation in a gravitational field is called **potential energy** (PE) and is expressed as


PE = mgz (kJ)

The magnetic, electric, and surface tension effects are significant in some specialized cases only and are usually ignored. In the absence of such effects, the total energy of a system consists of the kinetic, potential, and internal energies and is expressed as

 $E = U + KE + PE = U + m\frac{V^2}{2} + mgz$ (kJ)

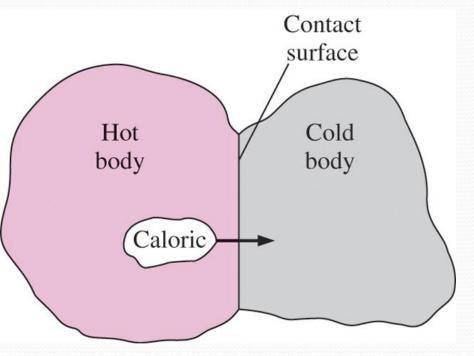
ENERGY TRANSFER BY HEAT


Heat: The form of energy that is transferred between two systems (or a system and its surroundings) by virtue of a temperature difference.

Energy can cross the boundaries of a closed system in the form of heat and work.

Room air 25°C No heat Heat Heat 8 J/s 16 J/stransfer Soda Soda Soda 25°C 15°C 5°C

Temperature difference is the driving force for heat transfer. The larger the temperature difference, the higher is the rate of heat transfer.

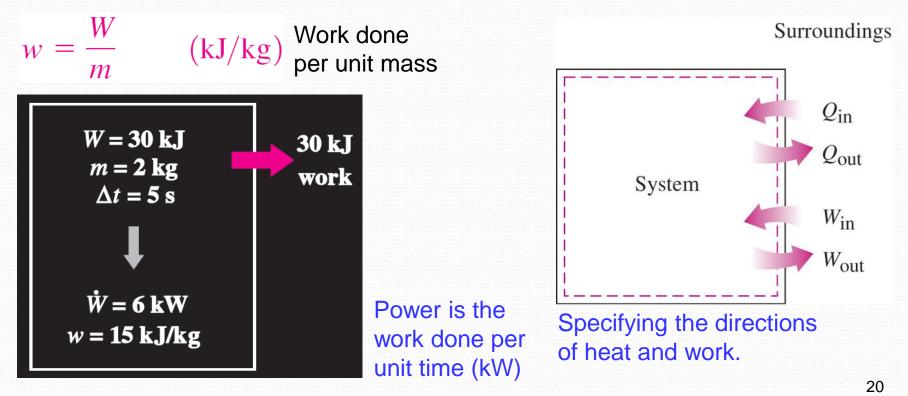


Historical Background on Heat

- Kinetic theory: Treats molecules as tiny balls that are in motion and thus possess kinetic energy.
- Heat: The energy associated with the random motion of atoms and molecules.

Heat transfer mechanisms:

- Conduction: The transfer of energy from the more energetic particles of a substance to the adjacent less energetic ones as a result of interaction between particles.
- **Convection:** The transfer of energy between a solid surface and the adjacent fluid that is in motion, and it involves the combined effects of conduction and fluid motion.
- Radiation: The transfer of energy due to the emission of electromagnetic waves (or photons).



In the early nineteenth century, heat was thought to be an invisible fluid called the *caloric* that flowed from warmer bodies to the cooler ones.

ENERGY TRANSFER BY WORK

Work: The energy transfer associated with a force acting through a distance.

- A rising piston, a rotating shaft, and an electric wire crossing the system boundaries are all associated with work interactions
- Formal sign convention: Heat transfer to a system and work done by a system are positive; heat transfer from a system and work done on a system are negative.
- Alternative to sign convention is to use the subscripts *in* and *out* to indicate direction.

Heat vs. Work

- Both are recognized at the boundaries of a system as they cross the boundaries. That is, both heat and work are *boundary* phenomena.
- Systems possess energy, but not heat or work.
- Both are associated with a process
- Both are *path functions* (i.e., their magnitudes depend on the path followed during a process as well as the end states).

$$\Delta V_A = 3 \text{ m}^3; W_A = 8 \text{ kJ}$$

$$\Delta V_B = 3 \text{ m}^3; W_B = 12 \text{ kJ}$$

$$A V_B = 3 \text{ m}^3; W_B = 12 \text{ kJ}$$

$$A V_B = 3 \text{ m}^3; W_B = 12 \text{ kJ}$$

$$A V_B = 3 \text{ m}^3; W_B = 12 \text{ kJ}$$

$$A V_B = 3 \text{ m}^3; W_B = 12 \text{ kJ}$$

Properties are point functions; but heat and work are path functions (their magnitudes depend on the path followed).

Properties are point functions have exact differentials
$$(d)$$
.

$$\int_{1}^{2} dV = V_2 - V_1 = \Delta V$$

Path functions have inexact differentials (δ) $\int_{1}^{2} \delta W = W_{12}$

D

(not ΔW

Electrical Work

Electrical work

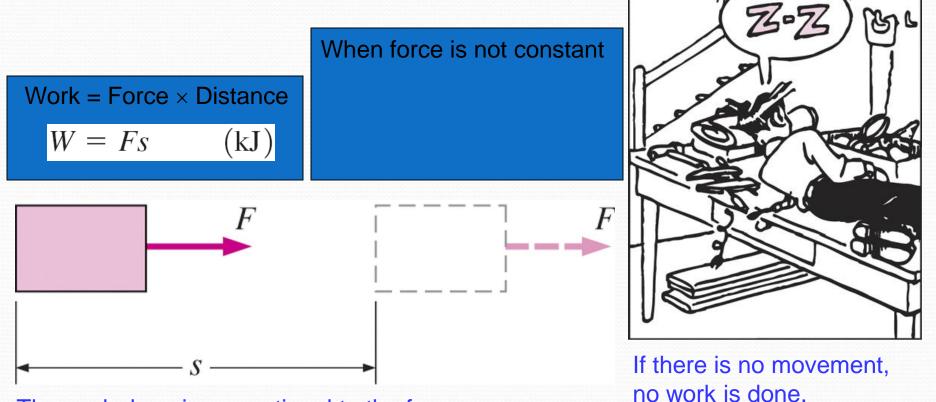
 $W_e = \mathbf{V}N$

Electrical power $\dot{W}_e = \mathbf{V} I$ (W)

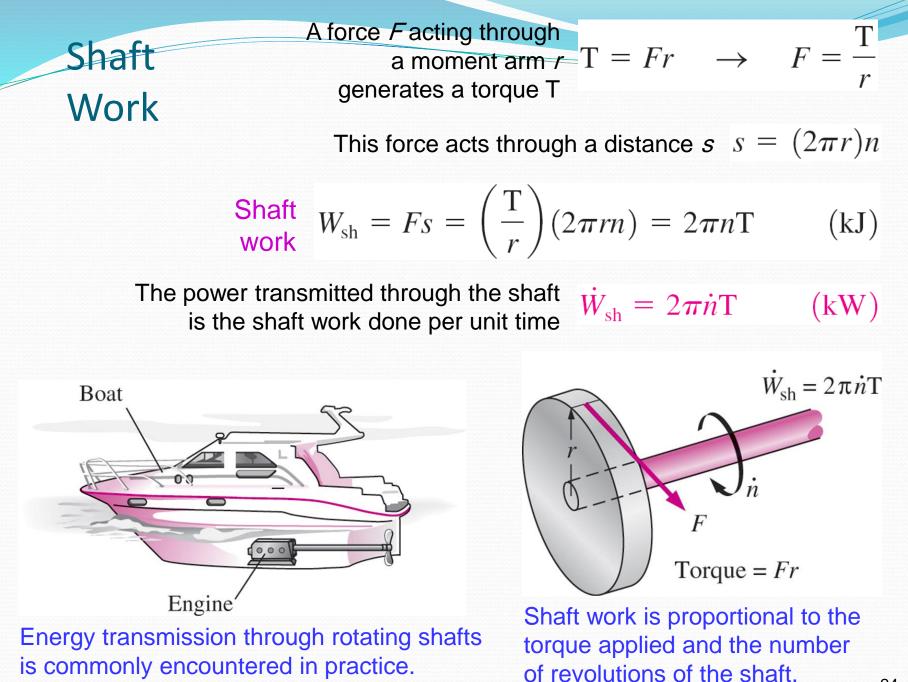
When potential difference and current change with time

$$W_e = \int_1^2 \mathbf{V} I \, dt \qquad (\mathbf{kJ})$$

 $\dot{W}_e = \mathbf{V}I$ $= I^2 R$ $= \mathbf{V}^2/R$


Electrical power in terms of resistance *R*, current *I*, and potential difference **V**.

When potential difference and current remain constant


 $W_e = \mathbf{V}I \ \Delta t \qquad (\mathbf{k}\mathbf{J})$

MECHANICAL FORMS OF WORK

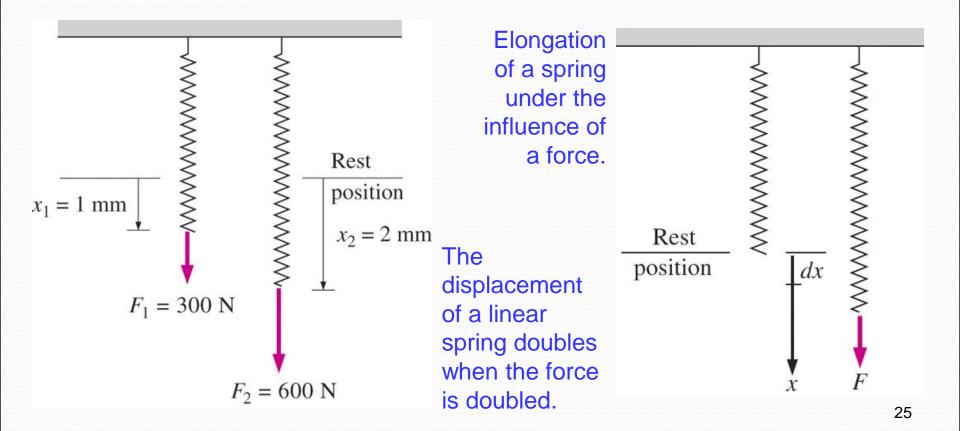
- There are two requirements for a work interaction between a system and its surroundings to exist:
 - there must be a *force* acting on the boundary.
 - the boundary must move.

The work done is proportional to the force applied (F) and the distance traveled (s).

When the length of the spring changes by a differential amount *dx* under the influence of a force *F*, the work done is

$$\delta W_{\rm spring} = F \, dx$$

F = kx


For linear elastic springs, the displacement x is proportional to the force applied

(kN) k: spring constant (kN/m)

Spring Work

Substituting and integrating yield $W_{\text{spring}} = \frac{1}{2}k(x_2^2 - x_1^2)$ (kJ)

 x_1 and x_2 : the initial and the final displacements

Work Done on Elastic Solid Bars

$$W_{\text{elastic}} = \int_{1}^{2} F \, dx = \int_{1}^{2} \sigma_n A \, dx \qquad (\text{kJ})$$

Work Associated with the Stretching of a Liquid Film

$$W_{\text{surface}} = \int_{1}^{2} \sigma_{s} dA \qquad (\text{kJ})$$

$$\begin{array}{c} \text{Stretching a liquid film with a movable wire.} \\ \text{Solid bars behave as springs under the influence of a force.} \\ \end{array}$$

Work Done to Raise or to Accelerate a Body

- 1. The work transfer needed to raise a body is equal to the change in the potential energy of the body.
- 2. The work transfer needed to accelerate a body is equal to the change in the kinetic energy of the body.

Nonmechanical Forms of Work

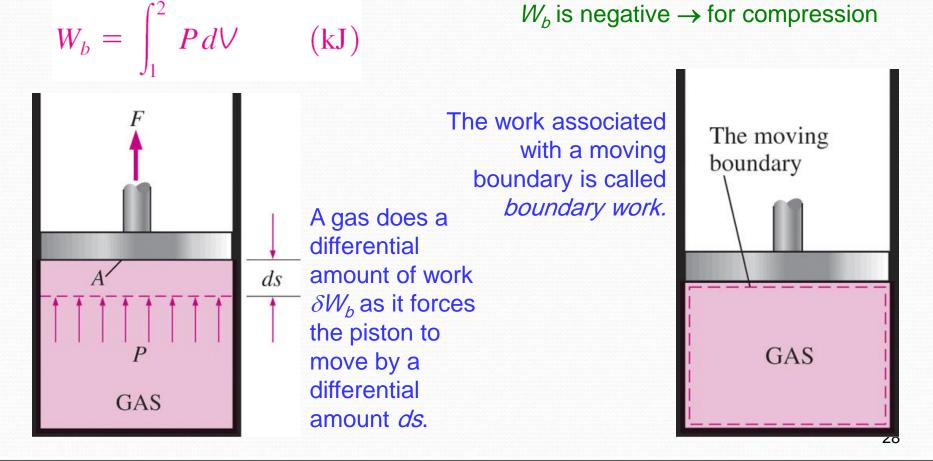
Electrical work: The generalized force is the *voltage* (the electrical potential) and the generalized displacement is the *electrical charge*.

Magnetic work: The generalized force is the *magnetic field strength* and the generalized displacement is the total *magnetic dipole moment.*

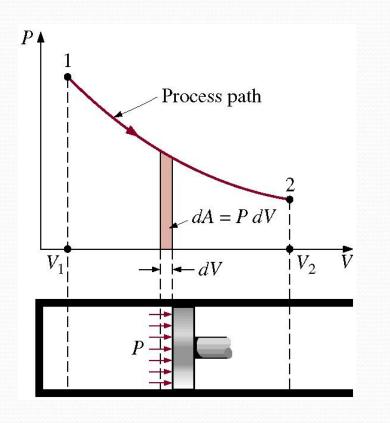
Electrical polarization work: The generalized force is the *electric field strength* and the generalized displacement is the *polarization of the medium.*

MOVING BOUNDARY WORK

Moving boundary work (*P dV* work):


The expansion and compression work in a piston-cylinder device.

$$\delta W_h = F \, ds = PA \, ds = P \, dV$$


Quasi-equilibrium process:

A process during which the system remains nearly in equilibrium at all times.

 W_b is positive \rightarrow for expansion W_b is negative \rightarrow for compression

The boundary work = the area under the process curve plotted on the pressure-volume diagram

Note from the figure:


P is the absolute pressure and is always positive.

When *dV* is positive, *Wb* is positive.

When *dV* is negative, *Wb* is negative.

The First Law of Thermodynamics

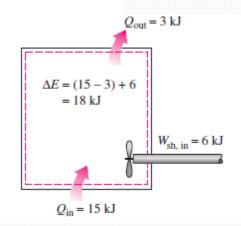
The *first law of thermodynamics,* also known as *the conservation of energy principle,* provides a sound basis for studying the relationships among the various forms of energy and energy interactions. The first law of thermodynamics states that *energy can be neither created nor destroyed during a process; it can only change forms.*

Energy Balance

 $\begin{pmatrix} \text{Total energy} \\ \text{entering the system} \end{pmatrix} - \begin{pmatrix} \text{Total energy} \\ \text{leaving the system} \end{pmatrix} = \begin{pmatrix} \text{Change in the total} \\ \text{energy of the system} \end{pmatrix}$

or

$$E_{\rm in} - E_{\rm out} = \Delta E_{\rm system}$$


Energy Change of a System

Energy change = Energy at final state - Energy at initial state

or

 ΔE

$$\Delta E_{\text{system}} = E_{\text{final}} - E_{\text{initial}} = E_2 - E_1$$

= $\Delta U + \Delta \text{KE} + \Delta \text{PE}$
 $\Delta U = m(u_2 - u_1)$
 $\Delta \text{KE} = \frac{1}{2}m(V_2^2 - V_1^2)$
 $\Delta \text{PE} = mg(z_2 - z_1)$

Mechanisms of Energy Transfer, E_{in} and E_{out}

Energy can be transferred to or from a system in three forms: *heat, work,* and *mass flow.*

$$E_{in} - E_{out} = (Q_{in} - Q_{out}) + (W_{in} - W_{out}) + (E_{mass,in} - E_{mass,out}) = \Delta E_{system} (2-34)$$

$$\underbrace{E_{in} - E_{out}}_{Net energy transfer} = \underbrace{\Delta E_{system}}_{Othange in internal, kinetic, potential, etc., energies} (kV)$$

$$\underbrace{E_{in} - E_{out}}_{Rate of net energy transfer} = \underbrace{dE_{system}/dt}_{Rate of change in internal, kinetic, potential, etc., energies} (kW)$$
Rate of net energy transfer by heat, work, and mass Rate of change in internal, kinetic, potential, etc., energies out