

Fundamentals of nanotechnology

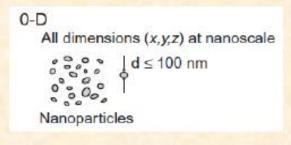
Assit. Prof. Dr. Niveen Jamal Abdulkader

Materials Engineering Department/ University of Technology

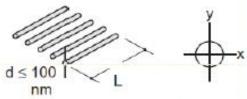
3rd Grade/ General Materials Branch

Lec. 2

2018-2019

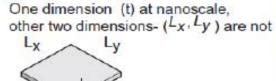

Fundamentals of nanotechnology

- Classification of nanostructures by dimensionality
- Zero-Dimensional Nanostructures
- One-Dimensional Nanostructures:
- Two-Dimensional Nanostructures:
- -Three-Dimensional Nanostructures

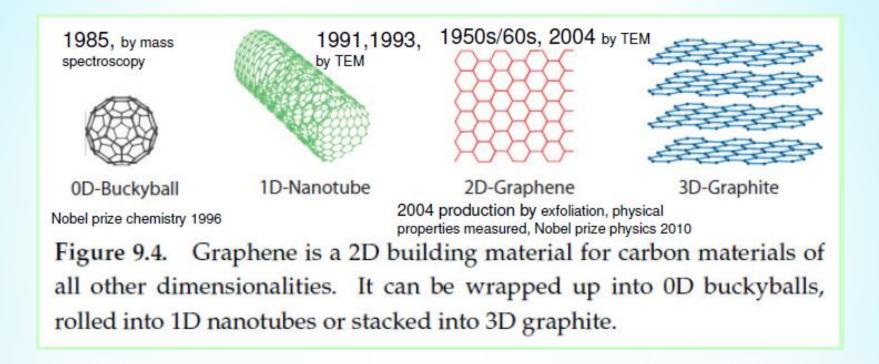

Classification of Nanomaterials

Classification

- Classification is based on the number of dimensions, which are not confined to the nanoscale range (<100 nm).
- (1) zero-dimensional (0-D),
- (2) one-dimensional (1-D),
- (3) two-dimensional (2-D), and
- (4) three-dimensional (3-D).



1-D Two dimensions (*x*,*y*) at nanoscale, other dimension (*L*) is not


Nanowires, nanorods, and nanotubes

2-D

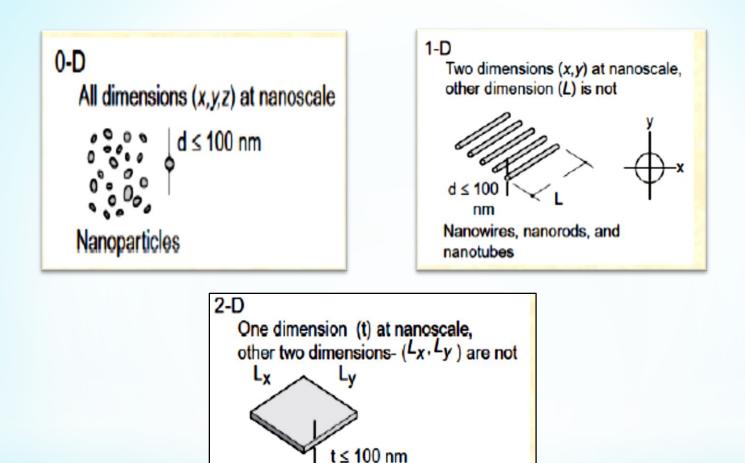
t ≤ 100 nm

Nanocoatings and nanofilms

Classification of Nanomaterials

Nanomaterials can be classified dimension wise into following categories.

1. Zero-dimensional (0-D) nanomaterials: nanoclusters and nanodispersions etc.


2. One-dimensional (1-D) nanomaterials: nanofibers, nanorods, nanotubes etc.

3. Two-dimensional (2-D) nanomaterials: nanofilms, nanocoatings etc.

4.Three-dimensional (3-D) nanomaterials: quantum dots, nanoparticles, fullerene, fibrous, multilayer and polycrystalline materials

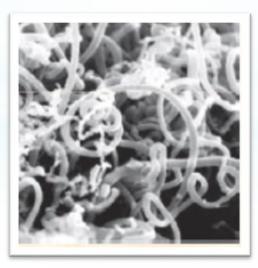
Classification of Nanomaterials

Number of nanosized dimensions nano-D = nD	Number of bulk dimensions (D)	Examples	
3 (Nanoparticles, nanocrystals)	0	nanoparticles, nanocrystals	0
2 (Nanowires, nanorods, nanotubes)	1	nanowires, nanorods, nanotubes	
1 (Nanolavers, nanofilms)	2	nanofilms. nanocoatings. nanolayers	
0	3	quantum dots, nanoparticles,	

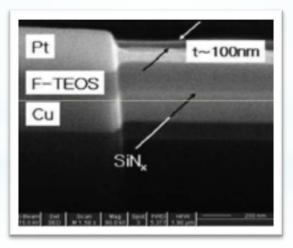
Nanocoatings and nanofilms

Figure 1. (0D), 1D and 2D nanomaterials.

Zero-dimensional nanomaterials


Nanoparticles can:

- * Be amorphous or crystalline
- * Be single crystalline or polycrystalline
- * Be composed of single or multi-chemical elements
- * Exhibit various shapes and forms
- * Exist individually or incorporated in a matrix
- * Be metallic, ceramic, or polymeric



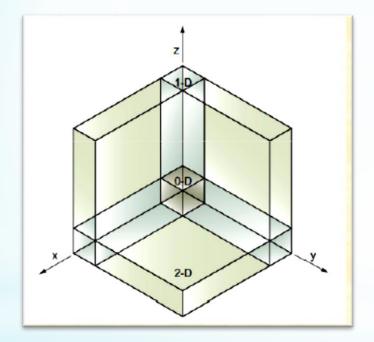
One-dimensional nanomaterials

- 1-D nanomaterials can be
- * Amorphous or crystalline
- * Single crystalline or polycrystalline
- * Chemically pure or impure
- * Standalone materials or embedded in within another medium
- * Metallic, ceramic, or polymeric

- 2-D nanomaterials can be:
- * Amorphous or crystalline
- * Made up of various chemical compositions
- * Used as a single layer or as multilayer structures
- * Deposited on a substrate
- * Integrated in a surrounding matrix material
- * Metallic, ceramic, or polymeric

Three-dimensional nanomaterials

* Bulk nanomaterials are materials that are not confined to the nanoscale in any dimension. These materials are thus characterized by having three arbitrarily dimensions above 100 nm.


*Materials possess a nanocrystalline structure or involve the presence of features at the nanoscale.

*In terms of nanocrystalline structure, bulk nanomaterials can be composed of a multiple arrangement of nanosize crystals, most typically in different orientations.

*With respect to the presence of features at the nanoscale, 3-D nanomaterials can contain dispersions of nanoparticles, bundles of nanowires, and nanotubes as well as multinanolayers.

Three-dimensional space showing the relationships among 0-D, 1-D, 2-D, and 3-D nanomaterials.

Three-dimensional space showing the relationships among 0-D, 1-D, 2-D, and 3-D nanomaterials.

- 0-D: All dimensions at the nanoscale
- 1-D: Two dimensions at the nanoscale, one dimension at the macroscale
- 2-D: One dimension at the nanoscale, two dimensions at the macroscale
- 3-D: No dimensions at the nanoscale, all dimensions at the macroscale