MATHEMATICS |




Outlines

e Complex Numbers

 Arithmetical operation and properties
e Argand Diagrams

e Euler’s Formula

 Dr Moivre’s Theorem

* Roots



Complex Numbers

A complex number is generally written as o + bi where ¢ and b are real numbers and 4, called the

mmaginary unit, has the property that + = —1. The real numbers ¢ and b are called the real and imaginary
parts of @ + bi respectively.

The complex numbers a + bi and a — bi are called complex conjugates of each other,

Arithmetical operation and properties

We make the following defimitions.

Fagrualitv

a + ibh = o + id Twwo complex numbers (a. H)
1if and only 1t and (o, &) are egrual if and only
ad — cand b = 4. 1ifa = cand & = 4.

Addition

(xz + ib) + (o + id) The swum of the two complex

— [z + c) + (B + ) numbers (a. ) and (. &) 15 the

complex number (¢ + c. & + ).
Al riplicarfiorn

(a2 + ibMc + id) The producr of two complex

= (ac — bd) + ilad + bc) numbers (a, ») and (c. &) is the
complex number (ac — bd, ad + bc).

cla + ib) = ac + i(bc) The product of a real number o

and the complex number (a. H) 1s
the complex number (ac. Hco).



Division
c + id  le + id)a — ib)  (ac + bd) + ilad — bc)
a+ ib (a + ibWa — ib) al + b2 ’

The result 1s a complex number x + v with

l:af'+£mf _ ad — be
at + b’ o at + b’

and a® + b? # 0, sincea + ib = (a, b) = (0, 0).

EXAMPLE 1 Arithmetic Operations with Complex Numbers

(a) 2+3)+(6—-2)=(2+6)+(3—-2)i=8+i
(b) (2 +3i)—(6—2i)=(2—-6)+ (3 —(=2))i=—4+ 5i
(e) (2 + 3i)(6 — 2i) = (2)06) + (2N =2i) + (3iN6) + (3 —24)
=12 —4i + 18 — 6i* =12 + 14i + 6 = 18 + 14i
@ 13 _2+3i6+ 2
6 — 2i 6 — 286+ 2
12 + 4i + 18i + 6i°
36 + 12i — 12i — 44°

_6+22i _ 3 , 11,
40 20 T 20




Argand Diagrams

There are two geometric representations of the complex number
Z=X+1y: 1. as the point Ax, y) in the xy-plane
2. as the vector ()P from the origin to ~.
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FIGURE A.4 This Argand diagram
represents = = x + iy both as a point
Pix, y) and as a vector CWP .

In each representation, the x-axis 1s called the real axis and the y-axis 1s the imaginary
axis. Both representations are Argand diagrams for x + iy (Figure A.4).
In terms of the polar coordinates of x and y, we have

x = rcosh, Vv = rsinf,



and
z=x+iy=rcosf + ismnf). (10)

We define the absolute value of a complex number x + iy to be the length r of a vector
(JP from the ongn to P(x, v). We denote the absolute value by vertical bars; thus,

S 2
x + iy = Vx~ + 7
[f we always choose the polar coordinates r and # so that r 1s nonnegative, then
r=|x+iyl.

The polar angle # 15 called the argument of z and 15 wnitten # = arg z. Of course, any
integer multiple of 27 may be added to # to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its
conjugate Z, and its absolute value |z, namely,

77 =|z%



Euler’s Formula
The 1dentity

e = cos# + isin#,

called Euler’s formula, enables us to rewrite Equation (10) as
z = re®.

This formula, in turn, leads to the following rules for calculating products, quotients, powers,

and roots of complex numbers. It also leads to Argand diagrams for e®. Since

cos @ + isin#f is what we get from Equation (10) by taking » = 1, we can say that ™ is

represented by a unit vector that makes an angle # with the positive x-axis, as shown in
Figure A.5.
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FIGURE A.5 Argand diagrams fore® = cosf + isinf(a)asa
vector and (b) as a point.



Products

To multiply two complex numbers, we multiply their absolute values and add their angles. Let

z1 = r e, z7 = e, (11)
so that
¥
al=r, agn=0; |nl=n agn=~0.
Then
731 = rye™ e = gyttt
and hence >

FIGURE A.& When z; and =z; are
(12} multiplied, | z;z2| = ry - r; and
arg (z1z2) = 81 + .

|nz|=nn =

4

a

arg (z1z2) = 0 + b = arg z) + arg 2.

Thus, the product of two complex numbers 1s represented by a vector whose length 1s the
product of the lengths of the two factors and whose argument 1s the sum of their arguments
(Figure A.6). In particular, from Equation (12) a vector may be rotated counterclockwise
through an angle # by multiplying it by e. Multiplication by i rotates 90°, by — 1 rotates
| 80°, by —i rotates 270", and so on.



EXAMPLE 2  Finding a Product of Complex Numbers

letzy =1 +i,z22 = V3 — i We plot these complex numbers in an Argand diagram
(Figure A.7) from which we read off the polar representations

7 = -"'-.-“':EE r'-rr_.-'-iﬁ 7y = "}JE—J":IT_."E-‘

Then

Z1Zp = 2V2 exp (T - EEI') =2V2 exp (%)

_ Iy . L W)L - )
= 2\ 2 (:::us B + isIn IE) 2.73 + 0.734.
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FIGURE A.7 To multiply two complex
numbers, multiply their absolute values
and add their areuments.



Quotients

Suppose r» # 0 Equation (11). Then

if,
Zp  nev Sil01-6)

- r:-efﬂl -

7]

—r

Hence

=]
and arg|= | =8, — 6 = arg z; — arg =
7 |z rg(‘?) = -

That 15, we divide lengths and subtract angles for the quotient of complex numbers.

—_—

EXAMPLE 3  Letz; =1+ iandz = V3 — i, as in Example 2. Then

1+ \/2eim/4 B V2 Smif 12 Swmo .. 5w
V3 = s 2 ¢ = (707 cos B + Isin B

=~ (.183 + 0.683i.



Powers
[f n 15 a positive integer, we may apply the product formulas in Equation (12) to find
Z° = EeZv e, n factors

With z = re”, we obtain
7' = {!'EEH)H = peiftot ) f summands

= P, (13)

The length r = |z|1s raised to the nth power and the angle & = arg z 1s multiplied by n.
If we take ¥ = 1 in Equation (13), we obtain De Moivre’s Theorem.

De Moivre's Theorem

(cosB + isin@)" = cosnfl + isinnd. (14)



[f we expand the left side of De Moivre’s equation above by the Binomial Theorem
and reduce 1t to the form a + ib, we obtamn formulas for cos nfl and sin nf as polynomials
of degree nin cos # and sin .

EXAMPLE &4 Ifan = 3 in Equation (14), we have
(cosf + isinf) = cos30 + isin30.
The left side of this equation expands to
cos’ ) + 3icos’#sin® — 3cosBsin®f — isin’ .
The real part of this must equal cos 38 and the imaginary part must equal sin 38. Therefore,
cos 30 = cos' 8 — 3 cos @ sin” 6,

sin 30 = 3cosOsin @ — sin’ 0. |



Roots

If z = re™ is a complex number different from zero and n is a positive integer, then there
are precisely n different complex numbers wy, wy. ..., w,_, that are nth roots of z. To see
why, let w = pe™ be an nth root of z = re®, so that

.

w' =z
or
pleme = pe'?
Then
p = "":”;

1s the real, positive nth root of . For the argument, although we cannot say that ne and
# must be equal, we can say that they may differ only by an integer multiple of 2. That

15,

ne = 8 + 2k, k=0 %1, x2,....

Therefore,
g 29

&=E+kT.

i

Hence, all the nth roots of z = re™ are given by

n

Wre® = "ﬁ*";exp {(ﬁ + kz?r)., k=0, +1, £2..... (15)



There might appear to be infimitely many different answers corresponding to the
infinitely many possible values of k, but & = n + m gives the same answer as k = m in
Equation (15). Thus, we need only take n consecutive values for k to obtain all the
different nth roots of z. For convenience, we take

k=012,...,n—- 1.

All the nth roots of re” lie on a circle centered at the origin and having radius equal to
the real, positive nth root of r. One of them has argument a = #/n. The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle equal
to 27r/n. Figure A8 illustrates the placement of the three cube roots, wy, wy, wy, of the
complex number z = re®.
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FIGURE A.8 The three cube roots of

Z = f’r‘_’m_



EXAMPLE 5  Finding Fourth Roots

Find the four fourth roots of —16.

Solution  As our first step, we plot the number —16 1n an Argand diagram (Figure A.9)

and determine its polar repres&ntatii_:m re” Here,z = —16,r = +16.and# = 7. One of
the fourth roots of 16e™ is 2¢'™*. We obtain others by successive additions of
2m/4 = w/2 to the argument of this first one. Hence, v
4/ — (7 3w 5w Iw
Vibexpim Eexp£(4, 110 )ﬁ

and the four roots are

wp = 2 cns% + isin%} = IE(I + i)

3r .. 3w i~ .
wp =2 €0s 7~ + isin=—| = V2(-1 + i)
- - FIGURE A.9 The four fourth roots of

] - ~16.
T .. A i -
Wy = E_EDST + .ismT_ = V2(-1-i)
wi =2 cns?i + .F-Sin?—ﬂ' = ‘\E(I — i). O

4 4



EXERCISES 12.1

1. Solve the following equations for the real numbers, x and y.
a. (3 + &) —2(x — iy) =x + iy

| + iy 1 _
b. (I—r’) +1__|_{._}:—|-I-r

c. (3 —2i)(x+ iy) =2{x— 2iy) + 2i — 1

2 Express the complex numbers in Exercises 11-14 in the form re®™,

with » = 0 and —w =< @ = . Draw an Argand diagram for each
calculation.

1. (1 + V=3) 12, -1

| — &

13 | + :‘1—-‘3
| — i3

14. (2 + 31 — 24)

15. cos 48 16. sin 48

18. Find the two square roots of 1.
19. Find the three cube roots of —&f.
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