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Inverse Functions and Their Derivatives 
A function that undoes, or inverts, the effect of a function ƒ is called 
the inverse of ƒ, Inverse functions  play a key role in the development 
and properties of the logarithmic and exponential functions. 





EXAMPLE 1: Finding an Inverse Function 



EXAMPLE 2: 



˝Derivatives of Inverses of Differentiable Functions  

from Example 1, we see that  

THEOREM 1       The Derivative Rule for Inverses



EXAMPLE 3: Applying Theorem 1  

Solution:



EXAMPLE 4: Finding a Value of the Inverse Derivative      



EXERCISES 9.1: 
1. Each of Exercises, gives a formula for a function y = ƒ(x) and shows the graphs of   

ƒ and       Find a formula for        in each case.  

2. Formulas for Inverse Functions.
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3. 



Natural Logarithms 
In this section we use integral calculus to define the natural
logarithm function, for which the number a is a particularly
important value. The natural logarithm of a positive number x,
written as ln x, is the value of an integral.

DEFINITION, The Natural Logarithm Function  



The Derivative of  y = ln x 
For every positive value of x, we have

Notice: If u is a differentiable function of x whose values are 
positive, so that ln u is defined, then applying the Chain 
Rule .  



EXAMPLE 1: Derivatives of Natural Logarithms 



Notice: The functio n  y = ln 2x  has the same derivative as the 
function y = ln x. This is true of y = ln ax  for any positive number a:  

Since they have the same derivative, the functions y = ln ax and y = ln 
x differ by a constant.  

Properties of Logarithms



EXAMPLE 2: Interpreting the Properties of Logarithms  



EXAMPLE 3: Applying the Properties to Function Formulas



The Integral 





The Integrals of tan x and cot x
Equation (5) tells us at last how to integrate the tangent and 

cotangent functions.  

……….(5)̕

EXAMPLE 5: Applying Equation   (5)̕ 
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EXERCISES 9.2 
1. Using the Properties of Logarithms
a. Express the following logarithms in terms of ln 2 and ln 3. 

b. Use the properties of logarithms to simplify the expressions in
Exercises 3 and 4.



2. In Exercises 8–22, find the derivative of y with respect to x, t,or ѳ
as appropriate.  

3. Evaluate the integrals in Exercises 37–54. 



The Exponential Function 
We study its properties and compute its derivative and integral.
Knowing its derivative, we prove the power rule to differentiate when 

n is any real number, rational or irrational. 
The Function 
We can raise the number e to a rational power r in the usual way: 

(1)





Graphs of exponential functions 







. 











The Chain Rule extends Equation (5 ) in the usual way to a more 
general form.  





EXERCISES 9.3
1. Solving Equations with Logarithmic or Exponential Terms
In Exercises 6–10, solve for y in terms of t or x, as appropriate.  

In Exercises 13–16, solve for t. 

2. In Exercises 23–32, find the derivative of y with respect to x, t, or ѳ
as appropriate.



In Exercises 37–40, find  dy⁄dx. 

3. Evaluate the integrals in Exercises 41–62. 







Writing the first integral in differential form gives







The arithmetic rules satisfied by, given in Table 7.2

For example,







EXERCISES 9.4 
1. 



2. In Exercises, find the derivative of y with respect to the given
independent variable.  

3. Evaluate the integrals in Exercises.



Inverse Trigonometric Functions  
• Inverse trigonometric functions arise when we want to calculate 

angles from side measurements in triangles. This section shows 
how these functions are defined,graphed, and evaluated, how 
their derivatives are computed.



The graphs of the six inverse trigonometric functions are shown in 
Figure  

















Derivatives of the Other Three



EXAMPLE 10:

















EXERCISES 9.5 
1. Use reference triangles like those in Examples 1–3 to find the 

angles in Exercises 1–12.  

2. Trigonometric Function Values



3. Find the values in Exercises 17–20. 

4. Finding Trigonometric Expressions, Evaluate the expressions in 
Exercises 29–37. 

5. In Exercises 49–69, find the derivative of y with respect to the 
appropriate variable. 

6. Evaluate the integrals in Exercises 71–97.



Hyperbolic Functions  
ƒs -xd = -ƒsxd. ƒs -xd = -ƒsxd. ƒs -xd = -ƒsxd. ƒ ƒs -xd = -ƒsxd. s -xd = -ƒsxd.
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In this section,we give a brief introduction to hyperbolic functions, 
their graphs, how their derivatives are calculated.

˝Even and Odd Parts of the Exponential Function

An even function ƒ satisfies ƒ( -x) = ƒ(x),  while an odd function 
satisfies ƒ( -x) = -ƒ(x). 



Definitions and Identities 
The six basic hyperbolic functions.





Identities for hyperbolic functions  



Derivatives and Integrals





Inverse Hyperbolic Functions 
The inverses of the six basic hyperbolic functions are very useful in 

integration, We denote its inverse by





Useful Identities for inverse hyperbolic functions 

Derivatives of inverse hyperbolic functions



EXAMPLE 2:  Derivative of the Inverse Hyperbolic Cosine 
Show that if u is a differentiable function of x whose values are greater than 

1
1

,then
,then



Integrals leading to inverse hyperbolic functions  



EXAMPLE 3:   Evaluate



EXERCISES 9.6
1. 

2. In Exercises 13–26, find the derivative of y with respect to the 
appropriate variable .



4. Evaluate the integrals in Exercises 41–53. 

5. Evaluate the integrals in Exercises 67–71 in terms of
a. inverse hyperbolic functions.        b. natural logarithms. 
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