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Indefinite Integrals and the Substitution Rule

DEFINITION Indefinite Integral, Integrand
The set of all antiderivatives of f 1s the indefinite integral of f with respect to x,

denoted by
] flx) dx.

The symbol J'[ 15 an integral sign. The function f 1s the integrand of the inte-
gral, and x 1s the variable of integration.

EXAMPLE 1: Evaluate / (x? — 2x + 5) dx.

Solution: .
/{1‘ -+ §)dr =/.r2d:r - /lﬂh‘ - /Sd:q;



=[xzdx—2fxdx+5/1dx

13

T+L—r[)—2( +fg)+5[):+fj]

% —x2 =20 + 5x 4+ 5Ca

This formula 15 more complicated than it needs to be. If we combme C), —2C5, and 3C;
into a single arbitrary constant C = €y — 2C; + 3C3, the formula simplifies to

.‘-I.'3 7
T—I'-l-jjf-l-f



Basic Integration Formulas
1. [du=u+c¢, [(du+dv)=[du+[dv, and

[ kdu = ku + ¢

”r:+]

2. [rf”r:"n*= + C. n# —1

L

n +

d
3. [—f=ln|u|—|—C
|

L

[ sinu duy = —cosu + C

L

4.

5 [cm;udu=5inu—l— C

6. [l:ln wdu=In|secu| + C



7. jf.:{}ludu=ln|s;inu|—l—(7

8. jﬁccudu=ln sec i + tan u\ +C

9-jc%cud1£=ln escu = cotu| + C
10. jsuclu du=tanu + C

11. | csc’u du = —cotu + C

13

12. jsucu tanudu =secu+ C
. jcscu cotudu= —-cscu+ C



Solved Problems
In Problems 1 to 8, evaluate the indefinite integral at the left.

1, Jx"dx=%+€

—1
2. f%=[ 'zdx-—— C=-14¢
b¢ -1 X
3 Js’}’d —[ ‘gz=iwc=dac
. Zdz = 2—4}‘,3 42

-2:3 = HJ
4. J-‘J_ [ dx ”3+C Ix

3 2
3. J{hz—5:+3)dx=2]12d1—5_[1d:+3jdx=%—§-;—+3I+C



6. I(l - VX dx=[(x“z-xm)dr =[x”2dx -Jxm dr=3" =10+ C

7. [(35+4):ds=J(9$=+24s+lﬁ)ds=9(%s’)+2¢l(%52)+163+C=3s:’+1252+165+C

LS4 1 4!
8, JI Sf dx=f(x+5-—4x‘z)dx=lx‘+5x--x—+C=Jx"’+Sx+f+C
1 2 -1 2 X



"The Substitution Rule

Substitution: Running the Chain Rule Backwards

[fu = g(x) is a differentiable function whose range is an interval [ and f 1s con-
tinuous on [, then

[ e is = [ s au

The Substitution Rule provides the following method to evaluate the integral

/f[_g[:r]]g’[x] dx,

when f and g’ are continuous functions:

1. Substitute # = g{x) and du = g'(x) dx to obtain the integral

/f{u} du.

2. Integrate with respect to .

3. Replace u by g(x) in the result.



To evaluate an antiderivative J f(x) dx, it is often useful to

replace x with a new variable u by means of a substitution x = g(u), dx = g'(u) du. The equation
| £ dx = | faung () du

EXAMPLE 1;

To evaluate j(x +3)" dx, replace x + 3 with u; that is, let x = u — 3. Then dx = du. and

we obtain

f(x+3)”dx=fu“du=ﬁu”+c= px+3)+C



EXAMPLE 1: Using the Power Rule

= / u'? du

(/241 e |
{1 2 + 1 with #

2
= §H"'l +C simpler fi

2

Integrate, usm

T

=Z(1 +y)YP?+C  Replaceuby

-3



EXAMPLE 2 : Adjusting the Integrand by a Constant

Va4t — 1dt = f % VA — 1-4 dt

B l . @ Let i 4
o 4/1"'"1‘ (ﬂrf) ﬁlrir du [t 4

With the |/4 out front,
_ 112
=7 1= du the integral 15 now m

standard form.

] [ntegrate. usime Eq. (1)
- 31.-"?_. e withn = 1/2
14

4 simpler form

= %(4? -1+ C Replace u by 4



EXAMPLE 3: Using Substitution

With the (1/7) out front, the

— 1 cos u du
7 imtegral 1s now 1n standard form

Integrate with respect to u,

1 .
= 7 sinu + Table 4.2

= %Sin (78 + 5) + C Replace uby 78 + 5.

EXAMPLE 4: Using Substitution

fl': sin (x7) dx = /Sin (x?) - x? dlx
| Lt a x7,
= f Sin -Tﬁ'r“ II 2 jﬁ “..1:-..-: .
o %f simn & ofee

1 :
= o (—coswu) + C Integrate with respect to .

3

= — %{::}5 I:.‘-I:“I:] + O Replace w by x7°



EXAMPLE 6: Using Different Substitutions, Evaluate f

= z% 4+ 1.

/

Solution 1: Substitute . =

solution 2: Substitute u = Vz2 + 11
/ 2z dz
Wz 4+ 1

2z d=
Wzl 4+ 1

2z d=
vzt + 1

du Letw = =% + 1.
I-"F it 2=z d=.
= / 13 In the

B 2;3

wrrate with respect to a.



2 2

The integrals of sin“x and cos“x

EXAMPLE 7

(a) ]EiHEIdI =/ I — ;ﬂszxdx sin? g = J ;u:;l-.-
= (1-— ::naEx}:ir=L dv — L[ cos 2x dx

_1 B lsinl‘x sin 2x
2* 2 4

(b) /nns xdy = jl a mﬂx cosl ¢ = 7 :Dﬁlr

+ C

X
+C—E—

X As in part {a), but
— + C waribh o o ey e
E .q. with a sign change

sin kx . cos kx

and sin kx = -
k k

Note: integration, cos kx =



EXERCISES 8.1

1. Evaluate the indefinite integrals in Exercises 1-4 by using the given
substitutions to reduce the integrals to standard form.

1. [sml'nd'{ N =3

jlir ~1fd, u=rx'-1
3. f'-,n:f.e_rtan.e_?d! u=2

4.

Varts

a. Usingu = 5x + 8 b. Usingu = V5x + 8



2. Evaluate the integrals :

1. f{1r+|}-‘m-
Jdx
2. :
jil-.ﬂ'

3, fﬂf’l—ﬁ':dﬂ

CEI':- (3z+4)d

f dy dy

6. -/scc‘j'(l'u + 2) dx




"The Definite Integral

The symbol for the number [ in the definition of the definite integral 15

l h f(x) dx

which 1s read as “the mtegral from a to b of f of x dee x” or sometimes as “the integral

from a to b of f of x with respect to x.” The component parts n the integral symbol also
have names:

The function 1s the integrand.

Upper limit of integration
T b / x 15 the vanable of integration.
Integral sign H-_""'-‘.,,/’ f ( ) /
e
S : ,,f"'# When you find the value
Lower limit of integration ™« __ —  ofthe intcyﬂl you have

Integral of f from a'to b " evaluated the integral.



Properties of Definite Integrals

When f and gare integrable on the interval [a, b], the definite integral satisfies Rules
1to 7 in Table 5.1.

Table 5.1 Rules satisfied by definite integrals

a b
1. Order of Integration: / flx)dx = - / flx) dx A Definition
b a
2. Zero Width Interval: / flx)dx =0 Also a Definition
: 2
3. Constant Multiple: / kf(x)dx = k / f(x) dx Any Number k

2 2
/ —flx) dx = —/ flx) dx k= -1



Ell

Sum and Difference: / ) + g(x)) dx / flx)dx + / glx) dx

Additivity: / f(x) dx + /b f(x) dx = / f(x) dx

Max-Min Inequality: If f has maximum value max f and minimum value
min f on [a, b], then

b
minf'(b—a)S/f(x)drS max f+(b — a).

2 2
Domination: f(x) = glx)on [a, b] = / flx)dx = / 2(x) dx

b
f(x) = Oon|[a,b] = / f(x)dx = 0 (Special Case)



EXAMPLE 1: Using the Rules for Definite Integrals, Suppose that.

| 4 |
f flx)dx =3, / flx)dv = -2, f hix)de =1T.
-l l 1
Then

l 1
1. /f{x} dx = —f flx)dy = -(-2) =2 Rule |
f [Ef + 3ﬁ ].:1"{ = /f t?"-r + _1] Rules 3 and 4

5. Lf{_ ff n‘r+ff Rule 5



EXAMPLE 2: Finding Bounds for an Integral
Show that the value of [!\/1 = cosxar s less than 3\2

Solution  The Max-Min Inequality for definite integrals (Rule 6) says that min f- (b — a)

15 a lower bound for the value of _fff[x] dx and that max f+(b — a) 1s an upper bound.

The maximum value of V1 + cosxon [0, 1]is V1 + 1 = V2, 50

—

1 —
/ V1 +cosxde = V2-(1 —0)= V2.
(0

Since _ﬂ}l %1 4+ cosx dx is bounded from above by V2 (which 1s 1.414 ...), the integral
15 less than 3/2. O

Area Under a Curve as a Definite Integral

If v = fix) is nunn&gﬂtive and integrah]e over a closed interval [a, b]. then the
area under the curve y = f(x) over [a. b] i1s the integral of f from a to b,

f flx) dx.



EXAMPLE 3: Area Under the Line y = x, find the area A under y = x

over the interval [0,b], b> 0. ]

Solution: We compute the area in way. br

we have that b B2
xdx = =
0 2 b

[ b

Example 4 can be to integrate f(x) = x over any closed interval [a,b],

0< a <b. b 0 .E
/ Yy = / xdx + / ¥ dx Rule 5
of i o J0
P b
—/.1' dx + /xdx Rule |
J0 J0

7 2
a- | b°
2 i

Example 4

¥



In conclusion, we have the following rule for integrating 7(x) = x.

This formula gives the area of a trapezoid

down to the line y= x (see Figure).



DEFINITION  The Average or Mean Value of a Function

[f f 1s integrable on [a, b], then its average value on [a, b], also called 1ts mean
value, 15

b
av(f) = ﬁf flx) dx.

EXAMPLE 4: Find the average value of f(x) =v4 + x2 on [-2,2].

fix) = V4 — 21

Solution: Area = % ot = % ca(2) = 2. N J\ .
Because f 1s nonnegative, the area 15 also the value of the mtegral of f from -2to 2, i }

!
1 2

ra15

X

T

2 2
/ V-t de =2
-1

Therefore, the average value of f 15

2
av(f) = 7 I{—E} [E V4 — xtdy = %{Eﬂ'] = %




EXAMPEL 5: Find the average value of f(x) = 4 — xon [0, 3]

Solution
by
\_‘u:d-—x
| ! ’ %_ i
=J—u[ ~ x) =§(£4dx—£m:) \
= I
1 ¥ 07 i
(4[3‘“] (z‘?)) G 3\4\
_g4_3_3
=4 7=

The average value of f(x) = 4 -y over [0, 3] 15 )/2. The function assumes this value
when4 — x = 5/2 orx = 3/2.



EXERCISES 8.2
1. Using Properties and Known Values to Find Other Integrals.

A Suppose that f and & are integrable and that

' o o %
f flx)dx = —1, J"f Fflx)dx = 5, f hlx) dx = 4.
1 7 T

Use the rules im Table 5.3 to find

5 %

a. J!]/' —2 fix) dx b, f [flx) + Blx)] dx
5 1

C. J{ [Z2F(x) — 3h(x)] dx . J{-\ Flx) dx

7 7
e. J{ Filx) dx f. f [Alx) — Fflx)] dx
1 o

B. Suppose that [, g(f) dr = /2. Find

—3
a. f zlt) di b. f_g[u}-::_l'ﬂ
glr
f[—_g{a.]]-:ir ] f{ E




2. Use the rules in Table 5.1 and Equations (1) to evaluate the integrals in Exercises
41-50.

-

2 i l ]
1. x dx 2. '.iff'_r 3. f(l +%)ﬁ".'
I 1 8 3 )
. f
5. [ (W +1-5)d 6. [ (W +1-5)de
I I

3. In Exercises 1-4 use a definite integral to find the area of the region between the
given curve and the x-axis on the interval [0, 4].

bl

WX
x
3.y = 2x 4. y =75 + 1



4. In Exercises 1- 4, graph the function and find its average value over the given
interval.

1

1 f{x}=—% on [0,3] 2 fx)=-%'-1 on [0,1]

3. h(x)=~|x| on a.[-1,0], b.[0,1],and c.[-], 1]
“ fi)=(-1F o 13

5. Theory and Examples

1. What values of o and /» maximize the value of

Il.l
f (x — x*) dx?
il

2. Use the Max-Min Inequality to find upper and lower bounds for

the value of
1
|
j:: |+ o2 dx.




6. (Continuation of Exercise 5) Use the Max-Min Inequality to
find upper and lower bounds for

0.5 I 1 I
v 4 and —1 4.
ﬁ | + 2ov an ﬁ | + 2

Add these to arrive at an improved estimate of
L
f — 5 dx.
o 1 + x

7. Show that the value of |, n] sin{x*) dx cannot possibly be 2.

8. Show that the value of f Iﬂ \x + B dx lies between 2%/2 = 2.8
and 3.



Total Area

When we add up such terms for a negative function we get the
negative of the area between the curve and the x-axis. If we then

take the absolute value, we obtain the correct positive area.

EXAMPLE 5: Calculate the area bounded by the x-axis and the

parabola y =6 —x — x?

Solution: y=0=6-1- =0+ )2 - 1), which gives X = -3

The curve is sketched in Figure 5.21, and is nonnegative on [-3, 2].

The area 1s T

]
[

2
/ (6 —x — x%)dx = [!3.1’ — -

/
B 3 927\ _ s
_(12—2—3)—(43—2"'3)_2'}1’:‘ __ar__; o

ST / =
K

-3

I‘w-.il

The curve in Figure 3.21 is an arch of a parabola, and 1t 1s interesting to note that the area
under such an arch is exactly equal to two-thirds the base times the altitude:




EXAMPLE 6:

Figure, shows the graph of the function f(x) = sin xbetween x=0 and
x =21 Compute

(a) the definite integral of f(x) over [ O, 2r]

(b) the area between the graph of f(x) and the x-axis over [ 0, 2mr]

I - ¥ = sin X

J
e F
.-"" Area = 2 ""-. J .

0/ -,-'-. Area = /24

|\2_2.-"
1k

Solution  The definite integral for f(x) = sinx 1s given by

In 2a
/ sInx dy = —msx] = —[cos2m — cos0] = [l = 1] = 0.
J 0



The area between the graph of f(x) and the x-axis over [0, 27] 1s calculated by break-
ing up the domain of sin x into two pieces: the interval [0, 7] over which 1t 1s nonnegative

and the interval [#, 2] over which 1t 1s nonpositive.

f sinx dx = —cnsx} = —[cosm — cos0] = —[-1 — 1] = 2.
1 0

2ar 2
f sINX dx = —:::4::5}:] = —[cos2m — cosw] = —[1 — (—1)] = -2.

o

The second integral gives a negative value. The area between the graph and the axis 1s ob-
tamned by adding the absolute values

Area =|2| + |-2| = 4. o

Summary:

To find the area between the graph of v = f(x) and the x-axis over the interval
[a, b], do the following:

1. Subdivide [a, b] at the zeros of f.

2. Integrate f over each subinterval.

3. Add the absolute values of the integrals.



EXAMPLE 7:

Find the area of the region between the x-axis and the graph of

¥

f(X)=X3_X2_2)(/ ‘1£X£2- Ama:% y=x% _x? _2x
1 ,-’rf 0 7
/ l‘l'll""'a.,_" Area i |§—%|
" = 3
N, /
\,/’"'

Solution:
We integrate f over each subinterval and add the absolute values of

the calculated integrals. ﬂ
i 4 ] r -
X X 7 | ] )
/_1{1'3—.‘4:’2—11']{"‘1:[T—T—I‘]_l=ﬂ—_1+§—l =17

2 4 3 2
2 X oo g_8 4l ip=_8
ﬂ[r x" — 2x)dx Lf T X .; {4 3 4] 0 3

S

Total enclosed area = 2 + = '1‘— []




EXERCISES 8.3:

1. Evaluate the integrals in Exercises.

]
I,f[lr-l- 3) dx
-2
4 .1'3
3. /u‘ (3.!.‘ — T) dx
ﬂ.f 5iN x dx
1

/3
1. f 2 sect x dy
i

0
1 + cos 2t
lﬁ,f Tda‘

)

|':__|
17. (8y? + siny) dy

—m 2

[ (s-3)e

2
4. f (x! — 2x + 3) dx

2



2. In Exercises, find the total area between the region and the x-axis.

37. v= —x* — 2x

= o

Y
=
-

I
b

I
Led
o

I
_I.
5
-
| IIII|
-
I
oot

=y

] - /

III 1,
J""Il\ = sec { tan # \

X=q /
> i

Els

y=1+cosx




Substitution and Area Between Curves

Substitution in Definite Integrals

If g’is continuous on the interval [a, 6] and fis continuous on the

range of g, then.

b glk)
/ fleg(x))-g'(x) dx = / flu) du

EXAMPLE 8: b
Evaluate / IxIWVx? + 1 dx
—

" T F ]
Solution  We have two choices. f 2V + 1 de
-1

Method 1: _ /‘\ -
(




Method 2:

[ WV 4+ lde = / Vi du Letu =x" + 1,du = 3x" dx.
2 i .
= iu +C Integrate with respect fo u.
2.3, 9 ~.
= E{I + 1} +C Replace uby x” + 1.
] | . .
/3 L 1 g — g ] 32 Use the integral just found,
1131 Va'+ Ldv = }{I * 1} ]—l with limits of integration for x.

.
3 (17 + 172 = (-1 + 1]'“]
2| A A V2




“Area Between Curves

DEFINITION Area Between Curves

If f and g are continuous with f(x) = g(x) throughout [a, b]. then the area of
the region between the curves v = flx) and v = g(x) from a to b is the inte-

gral of ( f — g) from a to b

i
4= f () — g(x)] dx

-'|'_|
A

EXAMPLE 9: Find the areaofth regon enclsed by he parabola y = 2 — x*and the ne y = _;f/_\_‘,,; )
2 —xt=—x Equate fix) and g{x). (-1, lflf - fﬁ\: 2o

Solution e x—_2=0 e | .
[-'-": + 1}(1 — E] =0 Factor. o+ TI )
x = —1, x=2. Solve. (x, g(x))

The region runs from x = —1 to x = 2. The limits of integrationarea = —=1,b =2. 7~ \*~

The area between the curves 1s B 2
A=fUﬁ%qumﬁ=[ﬁz—ﬁwwﬂnﬁ

’ 2 x° v P
=f{2+x—_r]dx=|:1r+T—T:|_l
4

=( 33 ( +—+%)=§



EXAMPLE 10:

Find the area of the region in the first quadrant that is bounded above by y = V/x and be-
low by the x-axis and the lme y = x — 2. 4

Solution:

We subdivide the region at into
subregions A and B, shown in Figure
we solve the equations

E; =y-1 Equate f(x) and g{x).
¥ =(x- 2)2 =y -4 Square both sides
v-rdd=0 Rewnte.
(x-Dx-4)=0 Factor

=1, x=4 Salve



For0 =x = 2: flx) — glx) = Vi — 0= Vx
For2=x=4 flx)—elx)=vx-(x-2)=Vx-x+2

We add the area of subregions 4 and B to find the total area:

2 4
Total area — ﬂ Vxde + ﬁ (Vv —x + 2)dx

area of 4 area of &
32 E 32 _ 11 . )
2 2
2 a3 12 2 32
=§{E}- —ﬂ+(§[4]* —E+E)—(§{E}' —E+4)
_2 _ 10
=3 (8) — 2 = 7



EXAMPLE 11:

Find the area of the region in Example 5 by integrating with respect

toy. .
Solution :The region’s right-hand boundary | Y
istheline x=y+2,s0f(y)=y+ 2. (2(y). ) 131 - ,J
) - I=y+2
The left-hand boundary is the curve x=y%, || ,,.-fiﬂ + .
SO g(y) = yz. The lower limit of integration is Py ) _Z[ﬂ_ﬂl'“'”“l
y = 0. We find the upper limit by solving T}J_[}g ' l|1
V= 2
p+2 =2 LAEeTl
yr—y—2=20 Rewrite.
(v + 1)y —2)=0 Factor
y = —1 y = 2 Solve
The upper imit of integration 1s b = 2. (The value y = —1 gives a pomt of intersection

below the x-axis.)



The area of the region 1s

b 2
fi=f[f[}?}—g(}*l]{iv=£UJ+E—}’1]@

2
=£[E+}*—f]ﬂﬁf

2 372
B 1 ¥ _}.l
eg-g]
_ 4 8 _ 10
=4+ -3=73-



“Combining Integrals with Formulas from Geometry
The way to find an area may be to combine calculus and geometry.

EXAMPLE 12: Find the area of the region, shown in figure,

Solution: oy
14, £
4 2 )
—_ I = VY
Area = / Vxde — 5 (2)02) T -
. I::l = I f.__,..-""--.-‘l.:.l—z z
2 19 : .r/ ﬂl;:ﬂ=2
= S x™ — 2 e
> ..] 0 .".':[} 2 4
2 10
= S(8)—0—2 =—.
o .



“Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating
rectangles are horizontal instead of vertical and the basic formula has y in place

of x. For regions like these.

¥ ¥ ¥
ur — — r b
f x = fly) / x = fly
|| = :.;r}'] II 1 . T
1;: ':I 0 \ )
x = gly)y \
I —— (o |7 [
i = T 0 X

use the formula

d
4= / [f(y) = glv)] dy.

In this equation f always denotes the rght-hand curve and g the left-hand curve, so
f(y) — ely) is nonnegative.



EXERCISES 8.4:
1. Use the Substitution Formula to evaluate the integrals in

- l T im
) a f V- dr b, f V= dr i a [ Ycos xsin dx b, / 3o rsin dx
I - 0 In

VT | ] . ? 1 W3 4 |
6. a. f (1 + 1)F di b, / A+ 1) P de 0, 4. f = b. f ——d
0, f=\T 0 Vit SURU SRS

Ir , 7 ) |
13 a.f 2 h.f = ot | e o2 2 3 2 (1] — 901 d)
0 V4 +3sinz = V4 + Jsinz I 0 W=yt 47+ 7Y -2y + 4)d
2. Find the total areas of the shaded regions In txercises
25. 3, . 3.

———




3. Find the areas of the regions enclosed by the lines and curves in
Exercises .

$Boy=x md y=-r+k

2.1=3> ad x=y+2

4. Find the areas of the regions enclosed by the curves in Exercises.

0 4 +y=4 md x*-y=1
60, 5 —y=0 ad %'-y=14
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