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e Functions

A function from a set Dto a set Yis a rule that assigns a wnique
(single) element f(x) € Y to each element x e D.

”A symbolic way to say “yis a function of X’ is by writing
y=f(x) (“yequals f of x’).

The symbol f represents the function. The letter x, called the
Independent variable, represents the input value of f, and y, the
dependent variable, represents the corresponding output value
of f at x.



e Domain and Range

Domain: The set from which the value of x can be chosen is called the
domain of the function.

Range: The set of all values of y is called the range of the function.
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Example 1:

L Given fix j;z, (a) f0); (B) (=1 (¢) f(20); (d) f(1 ) (&) flx + ).
1 1 -1-1 2 2a-1
(a) fl0)=—~— =3 (b) f(—1)=—lﬁ=‘§ () f(2ﬂ)=4a:+2
l/x-1 x-x x+h-1 x+h-1
@) )= " 1 ) f(1+h)=(x+h)1+2=x:+2h.r+h:+2

2. Determine the domains of the functions

@ y=Vé-xy () y=Vi-16 () y=ﬁ;

] X

= st

(a) Since y must be real, 4~ x> =0, or x’ =4. The domain is the interval -2 =< x=2.
(b) Here, x* ~16=0, or x* =16. The domain consists of the intervals x < -4 and x = 4.
(¢) The function is defined for every value of x except 2.

(d) The function is defined for x # +3.

(¢) Since x* +4#0 for all x, the domain is the set of all real numbers,




EXAMPLE 2
Determine the domains and ranges of these functions.

Function Domain (x) Range (y)
y = x? y= x? (—00, 00) [0, 00)
y =l INREEL (~00,0)U(0, )  (~00,0)U (0, %)
y= Vx y=Vx [0, ) 0, )
y=V4-—x y=V4-x (=00, 4] 0, o)
y=VI1 -4’ y=VI-¥ [-1,1] 0, 1]

Solution: "The formulay =x? gives a real y-value for any real number x, so the
domain is (-00,00) The range is[0,0) because the square of any real numberis

nonnegative.

"The formulay = z gives a real y-value for every x except x = 0, We cannot divide
X .
any number by zero. so the domain and range same are (—oo, 0) U( 0,00 ) .

" The formulay = +/x gives a real y-value only if x > 0, so the domain and range
same are [0, ).



"iny =,/(4 — x, the quantity 4 - x cannot be negative. That is,4—x >0, or x
<4,
so the domain is (—0,4]. The range is [0, 0 ), the set of all nonnegative
numbers.

” The formulay = V1 — x?2 gives a real y-value for every x in the closed
interval
From -1to 1. so the domainis [-1, 1]. therange of is [0, 1].

EXERCISES 2.1: find the domain and range of each function.

L f(x) =1+ 2 fx)=1- Vx

3 () = — 4, Fl) = ——
Vi | + Vi

5 glz) = V4 -2 b. g(z) = %



e Graphs of Functions

If f Is a function with domain D, its graph consists of the points in the
Cartesian plane whose coordinates are the input-output pairs for f. In set
notation, the graph is {( x,f(x)) | X € D }. To graph the function we
need,

1. Make a table of xy-pairs that satisfy the function rule.
2. Plot the points (x, y).

3. Draw a smooth curve through the plotted points. Label the curve
with its equation.

Example 3: Sketching a Graph "

1. Graph the function f(x) = x + 2
Solution: The graph of the function f(x) = x + 2 y=x+2
IS the set of points with coordinates (x, ) for which /
y=x+ 2. Its graph is sketched in Figure. 720




2. Graph the function Y = x? over the interval [-2, 2].

Solution: * v
1. Make a table of xy-pairs that satisfy the function rule, —2 4
— 1 |
() 0
| 1
E] 9
2 4
2 4
2. Plot the points (x, y) whose coordinates appear in the table.
¥
S | o124
3 -
39
2 “ '[E' 1
| | | |
2 1 o] 1 2 °



3. Draw a smooth curve through the plotted points. -

ePiecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts
of its domain. One example is the absolute value function

“l-Xx,x<0, | »=
y=-x 3
. . . . 2 Y=
whose graph is given in Figure.
l_
= 2 1 o] 1 2 3 °F

EXAMPLE 4 Graphing Piecewise-Defined Functions, The function

—X, x<0
F(x)=1 x?, 0<x<1
1, x>0



The values of f are given by: y=-x when x<0,y=x?when0<x<1,
and y=1whenx>1. Figure shows the graph.

y=x
!
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-2 -1 0 I

EXAMPLE 5: Write a formula for the function y = f(x) whose graph consists of the

two line segments in Figure shows the graph. y = feo
Solution: We find formula for the segment from - B 5P

(0, 0) to (1, 1) The line through (0, 0) and (1, 1) has slope / .
m = ii: = 8 :23 =1, and y-interceptb =0. Its slope-intercept equationis y = x.

"The Segment from (1, 0) to (2, 1) The line through (1, 0) and (2, 1) has slope

m = ii: = 8 :(3 = 1, and passes through the point (1, 0). The point slope equation for

the lineis y=0+1(x-1), or y=x-1.
Piecewise formula Combining the formulas for the two pieces of the graph, obtain

_ X, 0<x<l1
J:(")‘{x—1 1<x<?



EXERCISES 2.2

1) Find the domain and graph of each functions.

1. f)=1-2x-x2 2 glX)=y—x 3. Flt)= — 4. g(x)=/Ix|

|t
2) Graph the following functions.

(1-x,0 <x<1 (1/x, x <0
1 g(x)_{z—x,1<x£2 2. G(X)_{ x, 0<x

3) Find a formula for each function graphed.

y y

1. &

20
IN@2 D
\0\4—”

2 5
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eTypes of functions

1. Linear Functions: A function of the form 7(x) = mx + b for constants mand b, is
called a linear function. Figure shows an array of lines f(x) = mx where b =0, so

¥

these lines pass through the origin. ez 1 o n

y=-3x

m=-1

”A Constant functions has slope m = 0, Figure shows.

¥
-




2. Power Functions: A function f(x) = x%, where a is a constant, is called a power
function. There are several important cases to consider.

a. n, apositiveinteger.

The graphs of f(x) = x™, for n=1,2, 3, 4, 5, defined for -co < x < 0. are displayed
in Figure
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b. n=-1 or n=-2.
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The graphs of the functions f(x) = x~

Domain: x = 0
1 Range: w=0




1 1 3 2
n=-,-,-,and-.
2 3 2 13 1 3 2
The function f(x)=x2=vx, gX)=x3=3%x, y=xz2=(x2)3, y=x3= (x%)2 The
domain of the square root function is [0,00), but the cube root %unction is defined for all
real x. Their graphs are displayed in Figure.

C.

y =i

— — i3

. }I_Il’
1L
. / o | - \_/
| //G ! F 0 Il a 0 ]I o
Domain; (=5 < = Domain; —= < 1= = .

i —— ) Domain: 0= x<" = Domain: —= < x < =
Raﬂgﬂ: 0= y = Rﬂ“ﬁﬂ: TEIyEE Range: O=y< = Range: O=y<m=

3. Polynomials: A function p is a polynomial if
p(x)=anx™+a,_; x" 1+
* All polynomials have domain (— 0o, ). If the leading coefficienta,, # 0 and n> 0

then n is called the degree of the polynomial. Figure shows the graphs of three
polynomials.
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4. Rational Functions: A rational function is a ratio of two polynomials:

_p)
fx) =275

For example, the function is shown in Figure.

The domain of a rational function is the set of all real x for which g(x)+# 0
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5. Algebraic Functions: An algebraic function is a function constructed from
polynomials using algebraic operations (addition, subtraction, multiplication, division,
and taking roots). Rational functions are special cases of algebraic functions. Figure
displays the graphs of three algebraic functions.

W

[ I ARTS
— 3

ill

21

(a) (b (c)

6. Trigonometric Functions: The graphs trigonometric functions of the sine and
cosine functions are shown in Figure.

¥ y
L o

/NN N N

(a) fix) = sinx (b) fix) = cosx




7. Exponential Functions: Functions of the form f(x) = a* where the baseisa > 0 s
a positive constant and a # 1, are called exponential functions. All exponential
functions have domain ( -0, ) and range (0, o). The graphs of some exponential
functions are shown in Figure.

¥ ¥
I y = 10% y = 10~*
12 12—
10 10
Y B
o ¥ — 34X [y -
4 4l
1. = y=2= ’r
=ﬂ=F-='°‘:T_._'-_- 1 |- _— ) | | I e ——] x
-1 05 0 0.5 1 -1 05 0 0.5 |
(a) y=25y=3%y= 107 (b)) y=2F y=3%y=10""

8. Logarithmic Functions: These are the functionsf(x) = log,x, where the base a # 1
is a positive constant. Figure shows the graphs v

of four logarithmic functions with various bases. ¥ = logax
In each case the domainis (0, c0) and the range

is (-00, 00). 5

y = logyx

Py

> X
¥ = logsx




eEven Functions and Odd Functions: Symmetry
A function y= f(x) iIs an

even function of xif f(-x) = f(X),

odd function of xif f(-x) = - f(X),

for every xin the function’s domain.

}:
A

W
\ y =1

—x, ¥ X, vl -
\ < x
P
0 —x, —V)

”A function f is even if and only if the graph off is symmetric about the y~axis.

"The graph of an odd function is symmetric about the origin.



EXAMPLE 6: Say whether the function is Even, Odd, Functions. or neither.

1. f(x) = x* 2.f(x) =x%+1 3. f(x) = x 4. f(x) =x+1

Solution:

1. f(x) = x? - Even function ( —x)*= x? for all x; symmetry about y-axis.

2. f(x)=x*+1 - Evenfunction (—x)%+ 1= x*% + 1: for all x; symmetry about
y-axis. )

3. f(x) =x — 0dd function(-x) = = x for all x; symmetry about the origin.

4.f(x)=x+1 - Notodd:f(-x) =-x+1, but—f(x) =-x-1. The two are not equal.

Not even: (x)+1#x+1forallx#0

]
=



EXERCISES 2.3 Say whether the function is even, odd, or neither. Give reasons for
your answetr.

18. f(x)=x"> 19. g(x)=x*+x%2—1 20. h(t)=| t3]
x*+1
21. y=—3— 22. y=vVx* -1 23. y=x°-x3-x

e Composite Functions
If f and g are functions, the composite function f ° g (“f composed with g”) is
defined by

(Fea)x) = flg(x)).

The domain of f° g consists of the numbers x in the domain of g for which g(x)
lies in the domain of f. To find ( f ° g)(x), first find g(x) and second find f(g(x)).

/ X. SN
. .
y

e [ ey f(g(x)

£2(x)

Arrow diagram for f o g.



EXAMPLE 7 If f(x) =+/x and g(x) = x+1, find
(a) (f°g)(x) (b) (g°f)(x) (c) (f°f)(x) (e) (g°g)(X).

Solution:
Composite Domain
(@) (feg)x)= flalx))=ygx) =vx+1 [-1, o)
(b) (g°f)(x)=a(f(x)=f(x)+1=+/x+1 [0, o)
() (Fof)(x)=f(f(x) = [F(x) =[x =x3 [0, )
(d) (g°g)(x)=g(g(x))= g(x)+1=(x+1)+1=x+2 (- 00, 0)

”Notice: thatif f(x) = x* and g(x) = /x then (f° g)(x) = (\/x )? = x. However, the
domainof fog is [0, ), not (-0, 00)



« Shifting a Graph of a Function
Vertical Shifts
y=f(x) +k Shifts the graph of f up k unitsif k> 0
Shifts it down [k/ units if k< 0
Horizontal Shifts
y=f(x+h) Shifts the graph of f left h unitsifh > 0
Shifts it right |h | unitsifh <0

EXAMPLE ' 8  Shifting a Graph

(a) Adding 1 to the right-hand side of the formula y = x?

to gety = x2 + 1 shifts the graph up 1 unit (shows in Figure).
(b) Adding -2 to the right-hand side of the formula y = x?

to get y = x2 — 2 shifts the graph down 2 units

(shows in Figure).

I unit

\2

2 units



(c) Adding 3toxiny = x? to gety = (x + 3)? shifts the graph 3 units to the left
(shows in Figure).

Add a positive Add a negative

constant to x. . constant to x
g ‘I' E

¥ = (x + 332\
\

(d) Adding -2 to xin y = | x|, and then adding -1 to the result, givesy =| x -2|-1
and shifts the graph 2 units to the right and 1 unit down (shows in Figure).




EXERCISES 2.3
1. If f(x) = x+5 and g(x) = x? — 3, find the following.
a. flg(0)) b.g(f(X)) c f(f(-5))
2. Iff(x)=x-1and g(x)=ﬁ, find the following.
a. flg(1/2)) b. glf(x) c fif(2))
- Iff(x) =+/x and g(x) = E and h(x)=4x -8, find formulas for the following.

a. h(g(f(x)))  b. g(f(h(X))) c. f(h(g(x)))

4.  writea formulaforfeg and gef and find the domain and range of each.

F(x)=vx+1

5.  figure shows the graph of y = —x? shifted to two new positions. Write equations

for the new graphs. \/ Position (a)
N

1
0

> X

Position (b)




6  figure shows the graph of y = —-x? shifted to four new positions. Write an

equation for each new graph. y
(1, 4)

2. %) /\
ib) (a)

{c)

;7 Match the equations listed in parts (a)—(d) to the
graphs in the accompanying figure.
a. y=(x—1?%-1  b.y=(x—2)?+2
c. y=(x+2)%+2 c y=(x+3)*-2

Position 2 Position 1

(-2, 2} (2, 2)
Position 3
L1 | | . T

]
-4 3 /1K 0 1 2
Position 4
(-3, -2}

(1, -4)
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