MATHEMATICS I FIRST SEMESTER

Lec. 01

Preliminaries

Outlines

- Basics
- Real Numbers and the Real Line
 - Real Numbers
 - Intervals
 - Solving Inequalities
 - Absolute Value
- Lines
 - Cartesian Coordinates in the Plane
 - Straight Lines (point-slope equation, slope-intercept equation)
 - Parallel and Perpendicular Lines
 - Distance in the Plane

Basics

Arithmetic Operations

$$a(b + c) = ab + ac \qquad \qquad \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$\frac{a + c}{b} = \frac{a}{b} + \frac{c}{b} \qquad \qquad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

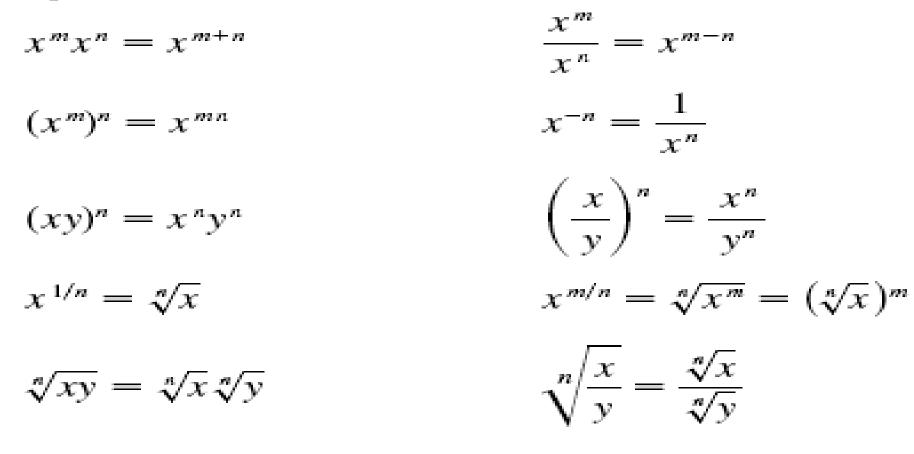
Factoring Special Polynomials

$$x^{2} - y^{2} = (x + y)(x - y)$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

Exponents and Radicals



Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Greek Alphabet

Greek le	日本に		
Lower case	Capital		
α	А		N
β	в		х
γ	г		c
8	Δ		F
ε	Е		F
ζ	z		5
η	н		r
θ	Θ		τ
د	I		I
ĸ	к		
λ	л		1
μ	м		
	α β γ δ ε ζ η θ ι λ	α Α β Β γ Γ δ Δ ε Ε ζ Ζ η Η θ Θ ι Ι κ Κ λ Λ	Lower caseCapital α A β B γ Γ δ Δ ϵ E ζ Z η H θ Θ ι I κ K λ Λ

Greek name	Greek letter		
	Lower case	Capital	
Nu	ν	N	
Xi	Ę	Ξ	
Omicron	0	0	
Pi	π	п	
Rho	ρ	Р	
Sigma	σ	Σ	
Tau	au	т	
Upsilon	υ	Ŷ	
Phi	φ	Φ	
Chi	x	х	
Psi	ψ	Ψ	
Omega	ω	Ω	

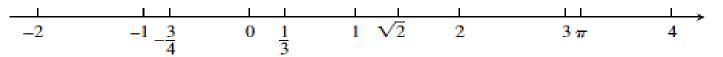
Real Numbers and the Real Line

• Real Numbers

Much of calculus is based on properties of the real number system. **Real numbers** are numbers that can be expressed as decimals, such as

$$-\frac{3}{4} = -0.75000...$$
$$\frac{1}{3} = 0.33333...$$
$$\sqrt{2} = 1.4142...$$

The real numbers can be represented geometrically as points on a number line called the real line.



The symbol ℝ denotes either the real number system or, equivalently, the real line. We distinguish three special subsets of real numbers.

- 1. The natural numbers, namely 1, 2, 3, 4, ...
- 2. The integers, namely $0, \pm 1, \pm 2, \pm 3, \ldots$
- 3. The rational numbers, namely the numbers that can be expressed in the form of a fraction m/n, where m and n are integers and $n \neq 0$. Examples are

$$\frac{1}{3}$$
, $-\frac{4}{9} = \frac{-4}{9} = \frac{4}{-9}$, $\frac{200}{13}$, and $57 = \frac{57}{1}$.

• Intervals

A subset of the real line is called an **interval** if it contains at least two numbers and contains all the real numbers lying between any two of its elements. For example, the set of all real numbers x such that x > 6 is an interval, as is the set of all x such that $-2 \le x \le 5$ The set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to contain every real number between-1 and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line, along with the real line itself. Intervals of numbers corresponding to line segments are **finite intervals**; intervals corresponding to rays and the real line are **infinite interval**.

• Solving Inequalities:

The process of finding the interval or intervals of numbers that satisfy an inequality in x is called solving the inequality.

TABLE 1.1 Types of intervals						
	Notation	Set description	Туре	Picture		
Finite:	(<i>a</i> , <i>b</i>)	$\{x \mid a < x < b\}$	Open	$a \qquad b$		
	[<i>a</i> , <i>b</i>]	$\{x a \le x \le b\}$	Closed	a b		
	[<i>a</i> , <i>b</i>)	$\{x \mid a \le x < b\}$	Half-open	$a \xrightarrow{b} b$		
	(<i>a</i> , <i>b</i>]	$\{x a < x \le b\}$	Half-open	$a \qquad b$		
Infinite:	(a,∞)	$\{x x > a\}$	Open	a		
	$[a,\infty)$	$\{x x \ge a\}$	Closed	a		
	$(-\infty, b)$	$\{x x < b\}$	Open	<u>b</u>		
	$(-\infty, b]$	$\{x x \le b\}$	Closed	<u></u> b		
	$(-\infty,\infty)$	R (set of all real numbers)	Both open	←───→		

EXAMPLE 1: Solve the following inequalities and show their solution sets on the real line.

a.
$$2x - 1 < x + 3$$
 b. $-\frac{x}{3} < 2x + 1$ c. $\frac{6}{x-1} \ge 5$

Solution:

a.
$$2x - 1 < x + 3 \rightarrow 2x < x + 4 \rightarrow x < 4$$

The solution set is the open interval (- ∞ , 4)

b.
$$-\frac{x}{3} < 2x + 1 \rightarrow -x < 6x + 3 \rightarrow 0 < 7x + 3$$

 $\rightarrow -3 < 7x \rightarrow -\frac{3}{7} < x$
The solution set is the open interval $\left(-\frac{3}{7}, \infty\right)$

C.
$$\frac{6}{x-1} \ge 5 \rightarrow 6 \ge 5x-5 \rightarrow 11 \ge 5x \rightarrow \frac{11}{5} \ge x$$

0 1 11
5

The inequality can hold only if x > 1, Therefore, (x – 1) is positive . solution set is the half-open interval (1, 11/ 5)

• Absolute Value:

The **absolute value** of a number *x*, denoted by |x| is defined by the formula.

$$|\mathbf{x}| = \begin{cases} x, & x \ge o \\ -x & x < 0 \end{cases}$$

EXAMPLE 2: Finding Absolute Values

$$|3|=3, |0|=0, |-5|=-(-5)=5, |-|a||=|a|$$

 $|x|=\sqrt{x^2}, |a|=\sqrt{a^2}$

Absolute Values and Intervals

If *a* is any positive number, then

$$|x| = a$$
 if and only if $x = \pm a$

$$|x| < a$$
 if and only if $-a < x < a$

.
$$|x| > a$$
 if and only if $x > a$ or $x < -a$

 $|x| \le a$ if and only if $-a \le x \le a$

$$|x| \ge a$$
 if and only if $x \ge a$ or $x \le -a$

Exercises 1.1

Solve the inequalities and show the solution sets on the real line.

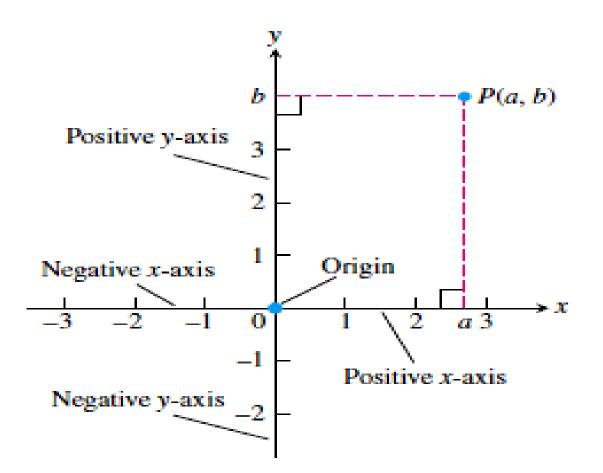
1. 3(2-x) > 2(3+x)2. $\frac{4}{5}(x-2) < \frac{1}{3}(x-6)$ 3. $-\frac{x+5}{2} \le \frac{12+3x}{4}$ 4. $\left|\frac{x}{5} - 1\right| \le 1$ 5. $|3 - \frac{1}{x}| < \frac{1}{2}$ 6. $\left|\frac{3x}{5} - 1\right| > \frac{2}{5}$ 7. $\left|\frac{2x+7}{2}\right| \le 5$ 8. $(x - 1)^2 < 4$ 9. $x^2 - x < 0$ 10. $x^2 - x - 2 > 0$

Lines

"This section reviews coordinates, lines, and distance.

• Cartesian Coordinates in the Plane:

draw two perpendicular coordinate lines that intersect at the 0-point of each line. These lines are called **coordinate axes** in the plane. On the horizontal x-axis, numbers are denoted by x increase to the right. On the vertical y-axis, numbers are denoted by y and increase upward (Figure 1). Thus "upward" and "to the right" are positive directions, whereas "downward" and "to the left" are considered as negative. The **origin** O, of the coordinate system is the point in the plane where x and y are both zero. If P is any point in the plane write P(a, b). This coordinate system is called the rectangular coordinate system or **Cartesian coordinate system** this coordinate divide the plane into four regions called **quadrants**, as shown in *Figure 2*.



Figuer 1. Cartesian coordinates in the plane are based on two perpendicular axes intersecting at the origin

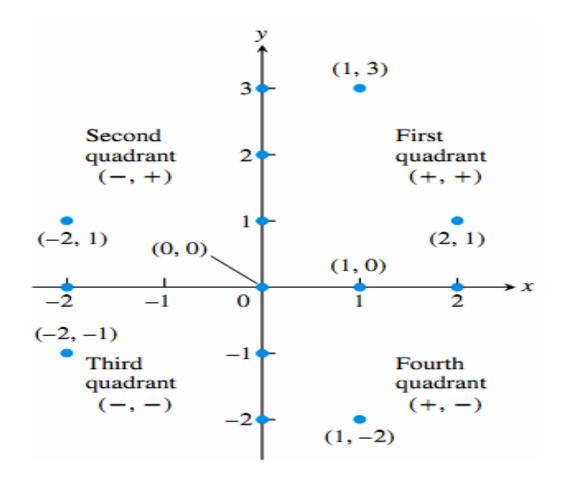


Figure 2. Points labeled in the xy-coordinate or Cartesian plane. The points on the axes all have coordinate pairs but are usually labeled with single real numbers, (so (1, 0) on the x-axis is labeled as 1). Notice the coordinate sign patterns of the quadrants.

• Straight Lines (slop and equation):

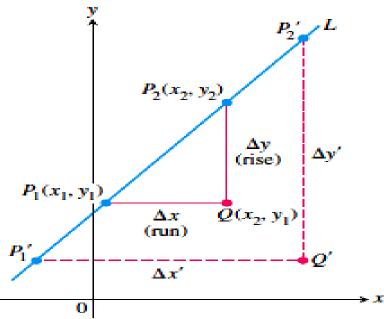
Slop:Given two points $P_1(x_1, y_1)$, and $P_2(x_2, y_2)$ in the plane, $\Delta x = x_2 - x_1$

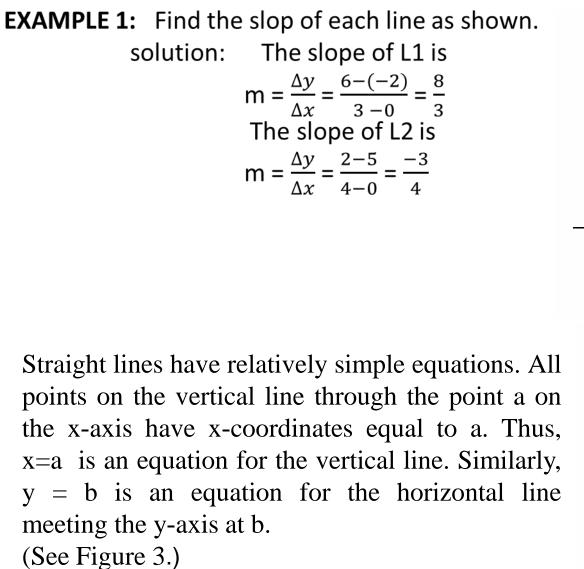
and $\Delta y = y_2 - y_1$ the **run** and the **rise**, respectively, between P₁

and P₂ two such points straight line passing through them both. we call the line $P_1 P_2$ any nonvertical line in the plane has the property that the ratio .

the constant
$$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y2 - y1}{x2 - x1}$$

is the **slope** of the nonvertical line $P_1 P_2$.





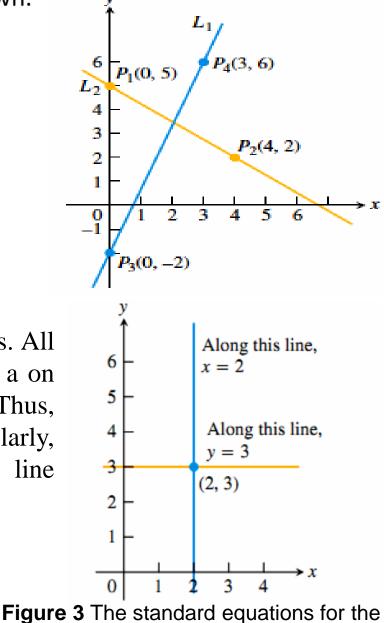


Figure 3 The standard equations for the vertical and horizontal lines through (2, 3) are and y = 3. x = 2

• point-slope equation:

We can write an equation for a nonvertical straight line *L* if we know its slope *m* and the coordinates of one point $P_1(X_1,Y_1)$ on it. If P(x, y) is *any* other point on *L*, then we can use the two points P_1 and *P* to compute the slope,

$$m = \frac{y - y_1}{x - x_1}$$
 so that $y - y_1 = m(x - x_1)$ or $y = y_1 + m(x - x_1)$
the equation $Y = Y_1 + m(X - X_1)$

is the **point-slope equation** of the line that passes through the point (*X*1,*Y*1) and has slop m.

EXAMPLE 2: Write an equation for the line through the point (2, 3) with slope -3/2.

Solution: We substitute $x_1 = 2$, $y_1 = 3$, and m = -3/2 into the point-slope equation and obtain $y = 3 - \frac{3}{2}(x - 2)$ or $y = -\frac{3}{2}x + 6$

EXAMPLE 3 A Line Through Two Points

Write an equation for the line through (-2, -1) and (3, 4).

Solution The line's slope is

$$m = \frac{-1 - 4}{-2 - 3} = \frac{-5}{-5} = 1.$$

4

We can use this slope with either of the two given points in the point-slope equation:

With $(x_1, y_1) = (-2, -1)$ With $(x_1, y_1) = (3, 4)$ $y = -1 + 1 \cdot (x - (-2))$ $y = 4 + 1 \cdot (x - 3)$ y = -1 + x + 2y = 4 + x - 3y = x + 1Same result

• Slope-intercept equation:

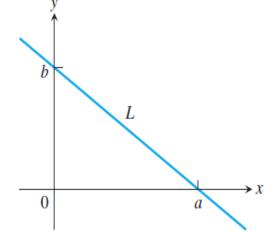
The *y*-coordinate of the point where a nonvertical line intersects the *y*-axis is called the *y*-intercept of the line. Similarly, the

x - intercept of the line .A line with slope *m* and *y*-intercept *b* passes through the point (0, *b*), so it has equation.

y = b + m(x - 0)

the equation y = mx + b is called the

slop-intercept equation of the line with slop n and y-intercept b.



Line *L* has *x*-intercept

a and y-intercept b

Note: Lines with equations of the form y + mx have *y*-intercept 0 and so pass through the origin.

EXAMPLE 4:

Finding the Slope and *y*-Intercept Find the slope and *y*-intercept of the line 8x + 5y = 20.

Solution: Solve the equation for *y* to put it in slope-intercept form:

$$8x + 5y = 20 \rightarrow 5y = -8x + 20 \rightarrow y = -\frac{8}{5}x + 4$$

The slope is $m = -\frac{8}{5}$. The *y*-intercept is b = 4.

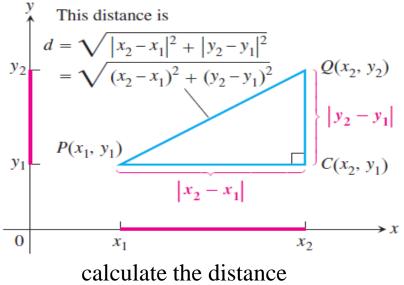
• Parallel and Perpendicular Lines:

Lines that are parallel, so they have the same slope. m1=m2If two nonvertical lines L1 and L2 are perpendicular, their slopes m1 and m2 satisfy m1 m2 = -1, so each slope is the *negative reciprocal* of the other:

$$m1 = -\frac{1}{m2}$$
 , $m2 = -\frac{1}{m1}$

Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the Pythagorean theorem



between $P(x_1, y_1)$ and $Q(x_2, y_2)$, apply the Pythagorean theorem to triangle *PCQ*.

The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

EXAMPLE 5 Calculating Distance

(a) The distance between P(-1, 2) and Q(3, 4) is

$$\sqrt{(3-(-1))^2+(4-2)^2} = \sqrt{(4)^2+(2)^2} = \sqrt{20} = \sqrt{4\cdot 5} = 2\sqrt{5}.$$

(b) The distance from the origin to P(x, y) is

$$\sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}.$$

Exercises1.2:

Write an equation for each line described.

- 1. Passes through (-8,0) and (-1,3).
- 2. Passes through (2,-3) with slop 1/2.
- 3. Has slope -5/4 and y-intercept 6 .
- 4. Passes through (-12, -9) and has slope 0.
- 5. Passes through (1/3, 4), and has no slope.
- 6. Has y-intercept -6 and x-intercept 2 .
- 7. Passes through $(-\sqrt{2}, 2)$ parallel to the line $\sqrt{2} x$ + 5y= $\sqrt{3}$.
- 8. Passes through(4,10) and is perpendicular to the line 6x 3y=5.