MATHEMATICS I FIRST SEMESTER

Lec. 05

Limits And Continuity

Outlines

- Limit of a Function
- Calculating Limits Using the Limit Laws
- One-Sided Limits and Limits at Infinity
 - One-Sided Limits
 - Limits Involving (sin θ)/θ
 - Finite Limits as $x \to \pm \infty$
 - Continuous Functions

Limit of a Function

Let f(x) be defined on an open interval about x_0 except possibly at itself. We say that the limit of f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L,$$

Example 1: The Identity and Constant Functions Have Limits at Every Point

(a) If f is the identity function f(x) = x, then for any value of x_0

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0$$
$$\lim_{x \to -13} (4) = 4$$

(b) If f is the constant function f(x) = k (function with the constant value k), then for any value of x_0 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k.$

For instance,

$$\lim_{x \to 3} x = 3 \quad \text{and} \quad \lim_{x \to -7} (4) = \lim_{x \to 2} (4) = 4.$$

Calculating Limits Using the Limit Laws

The next theorem tells how to calculate limits of functions

THEOREM 1 Limit Laws If *L*, *M*, *c* and *k* are real numbers and

1. Sum

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M, \text{ then}$$

Rule:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: $\lim_{x \to c} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: lim(k

$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

EXAMPLE 2: Using the Limit Laws to find the following limits.

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$
 (b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ (c) $\lim_{x \to -2} \sqrt{4x^2 - 3}$

Solution

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} 3$$
Sum and Difference Rules
$$= c^3 + 4c^2 - 3$$
Product and Multiple Rules
(b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{\lim_{x \to c} (x^4 + x^2 - 1)}{\lim_{x \to c} (x^2 + 5)}$$
Quotient Rule
$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$
Sum and Difference Rules
$$= \frac{c^4 + c^2 - 1}{c^2 + 5}$$
Power or Product Rule

(c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

= $\sqrt{\lim_{x \to -2} 4x^2 - \lim_{x \to -2} 3}$
= $\sqrt{4(-2)^2 - 3}$
= $\sqrt{16 - 3}$
= $\sqrt{13}$

Power Rule with $r/s = \frac{1}{2}$

Difference Rule

Product and Multiple Rules

THEOREM 2 Limits of Polynomials Can Be Found by Substitution If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, then

$$\lim_{x\to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \cdots + a_0.$$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

Example 3: Evaluate
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$
.

Solution : We cannot substitute because it makes the denominator zero.

$$\frac{x^2+x-2}{x^2-x} = \frac{(x-1)(x+2)}{x(x-1)} = \frac{x+2}{x}, \quad \text{if } x \neq 1.$$

Using the simpler fraction, we find the limit of these values as $x \rightarrow 1$ by substitution:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x} = \frac{1 + 2}{1} = 3.$$

EXAMPLE 4 Creating and Canceling a Common Factor Evaluate

$$\lim_{x\to 0}\frac{\sqrt{x^2+100}-10}{x^2}.$$

Solution: We cannot substitute x = 0, and the numerator and denominator have no obvious common factors. We can create a common factor by multiplying both numerator and denominator by the expression $\sqrt{x^2 + 100} + 10$,

$$\frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{x^2 + 100} - 10}{x^2} \cdot \frac{\sqrt{x^2 + 100} + 10}{\sqrt{x^2 + 100} + 10}$$
$$= \frac{x^2 + 100 - 100}{x^2(\sqrt{x^2 + 100} + 10)}$$
$$= \frac{x^2}{x^2(\sqrt{x^2 + 100} + 10)}$$
Common factor x^2
$$= \frac{1}{\sqrt{x^2 + 100} + 10}$$
Cancel x^2 for $x \neq 0$

Therefore,

-

-

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 100} + 10}$$
$$= \frac{1}{\sqrt{0^2 + 100} + 10}$$
$$= \frac{1}{20} = 0.05.$$

Denominator not 0 at x = 0; substitute

EXERCISES 5.1:

"Find the limits in the following Exercises

1. $\lim_{x \to -2} (x^3 - 2x^2 + 4x + 8)$ 2. $\lim_{x \to 2^{/3}} 3s(2s - 1)$ 3. $\lim_{y \to -3} (5 - y)^{4/3}$ 4. $\lim_{y \to -3} (5 - y)^{4/3}$ 5. $\lim_{y \to 2} \frac{y + 2}{y^2 + 5y + 6}$ 6. $\lim_{x \to -4} (x + 3)^{1984}$ 7. $\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$ 8. $\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$ 9. $\lim_{x \to 2} \frac{\sqrt{x^2 + 12} - 4}{x - 2}$ 10. $\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$ 11. $\lim_{x \to 0} \frac{(2 + x)^3 - 8}{x}$ 12. $\lim_{x \to 0} \frac{\frac{1}{2 + x} - \frac{1}{2}}{x}$

"Using Limit Rules to solve the following Exercises .

1. Suppose $\lim_{x\to 0} f(x) = 1$ and $\lim_{x\to 0} g(x) = -5$. Name the rules in Theorem 1

a.
$$\lim_{x \to 0} \frac{2f(x) - g(x)}{(f(x) + 7)^{2/3}}$$

2. Let $\lim_{x\to 1} h(x) = 5$, $\lim_{x\to 1} p(x) = 1$, and $\lim_{x\to 1} r(x) = 2$. Name the rules in Theorem 1 a.

$$\lim_{x \to 1} \frac{\sqrt{5h(x)}}{p(x)(4 - r(x))}$$

One-Sided Limits and Limits at Infinity

In this section we extend the limit concept to *one-sided limits*, which are limits as X approaches the number X_0 from the left-hand side (where $X < X_0$) or the right-hand side ($X > X_0$) only, and other functions with limit behavior as $X \rightarrow \pm \infty$.

" One-Sided Limits:

a. if f(x) is defined on an interval (c, b), where c < b and approaches arbitrarily close to L as x approaches c from within that interval, then f has **right-hand limit** L

at c. We write, $\lim_{x \to c^+} f(x) = L$. The symbol " $x \to c^+$ " means that we consider only values of x greater than c.

b. if f(x) is defined on an interval (a, c), where a < c and approaches arbitrarily close to M as x approaches c from within that interval, then f has **left-hand limit** M at c. We write, $\lim_{x \to c^{-}} f(x) = M$.

The symbol " $x \rightarrow c$ -" means that we consider only x values less than c.

EXAMPLE 5 One-Sided Limits for a Semicircle shown in figure.

The domain of $f(x) = \sqrt{4 - x^2}$ is [-2,2]. We have,

$$\lim_{x \to -2^+} \sqrt{4 - x^2} = 0 \quad \text{and} \quad \lim_{x \to 2^-} \sqrt{4 - x^2} = 0.$$

The function does not have a left-hand limit at X = -2 or a right-hand limit at X = 2. It does not have ordinary two-sided limits at either -2 or 2. (the function is one_side limits)

THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x\to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x\to c^-} f(x) = L \quad \text{and} \quad \lim_{x\to c^*} f(x) = L.$$

•Limits Involving $(\sin \theta)/\theta$

A central fact about $(\sin \theta) / \theta$ is that in radian measure its limit as $\theta \rightarrow 0$ is 1. We can see this in Figure,

THEOREM 7

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians}) \tag{1}$$

EXAMPLE 6: Using $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ Show that,

a. $\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$ **b.** $\lim_{x \to 0} \frac{\sin 2x}{5x} = \frac{2}{5}$.

Solution:

(a) Using the half-angle formula,

Note. When
$$sin^{2}\theta = \frac{1-cos2\theta}{2} \rightarrow 2sin^{2}\theta = 1 - cos2\theta \rightarrow cos2\theta = 1 - 2sin^{2}\theta$$

Let, $2\theta = h \rightarrow \theta = \frac{h}{2}$, than $cosh = 1 - 2sin^{2}\frac{h}{2}$.
The, $\lim_{h \to 0} \frac{cosh - 1}{h} = \lim_{h \to 0} \frac{1-2sin^{2}(h/2) - 1}{h} = \lim_{h \to 0} -\frac{2sin^{2}(h/2)}{h}$ divided by 2 obtain = $-\lim_{h \to 0} \frac{sin^{2}(h/2)}{h/2} = -\lim_{h \to 0} \frac{sin(h/2) * sin(h/2)}{h/2} = -(1) * \lim_{h \to 0} sin(h/2)$
 $= -(1) * sin(0/2) = -(1) * (0) = 0$

(b) We need a 2x in the denominator, not a 5x. We produce it by multiplying numerator and denominator by $\frac{5}{2}$:

$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \lim_{x \to 0} \frac{(2/5) \cdot \sin 2x}{(2/5) \cdot 5x}$$
$$= \frac{2}{5} \lim_{x \to 0} \frac{\sin 2x}{2x}$$
$$= \frac{2}{5} (1) = \frac{2}{5}$$

• Finite Limits as $x \to \pm \infty$

1. We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

2. We say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

THEOREM 8 Limit Laws as $x \to \pm \infty$ If *L*, *M*, and *k*, are real numbers and

- $\lim_{x \to \pm \infty} f(x) = L \quad \text{and} \quad \lim_{x \to \pm \infty} g(x) = M, \text{ then}$ 1. Sum Rule: 2. Difference Rule: 3. Product Rule: 4. Constant Multiple Rule: 5. Quotient Rule: $\lim_{x \to \pm \infty} f(x) + g(x)) = L + M$ $\lim_{x \to \pm \infty} (f(x) - g(x)) = L - M$ $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$ $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$
 - 6. *Power Rule:* If r and s are integers with no common factors, $s \neq 0$, then

$$\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

EXAMPLE 7 Find the following limits of a functions as $x \rightarrow \pm \infty$,

(a)
$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x}$$
$$= 5 + 0 = 5$$

(b)
$$\lim_{x \to -\infty} \frac{\pi \sqrt{3}}{x^2} = \lim_{x \to -\infty} \pi \sqrt{3} \cdot \frac{1}{x} \cdot \frac{1}{x}$$
$$= \lim_{x \to -\infty} \pi \sqrt{3} \cdot \lim_{x \to -\infty} \frac{1}{x} \cdot \lim_{x \to -\infty} \frac{1}{x}$$
$$= \pi \sqrt{3} \cdot 0 \cdot 0 = 0$$

(c)
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + (8/x) - (3/x^2)}{3 + (2/x^2)}$$
$$= \frac{5 + 0 - 0}{3 + 0} = \frac{5}{3}$$

Divide numerator and denominator by
$$x^2$$
.

(e)

$$\lim_{x \to -\infty} \frac{11x + 2}{2x^3 - 1} = \lim_{x \to -\infty} \frac{(11/x^2) + (2/x^3)}{2 - (1/x^3)}$$
$$= \frac{0 + 0}{2 - 0} = 0$$

Divide numerator and denominator by x^3 .

Continuous Functions

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is **continuous at an interior point** c of its domain if

$$\lim_{x \to c} f(x) = f(c).$$

Endpoint: A function y = f(x) is continuous at a left endpoint *a* or is continuous at a right endpoint *b* of its domain if

 $\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \text{ respectively.}$

If a function f is not continuous at a point c, we say that f is **discontinuous** at c and c is a **point of discontinuity** of f. Note that c need not be in the domain of f.

A function f is right-continuous (continuous from the right) at a point x = c in its domain if $\lim_{x\to c^+} f(x) = f(c)$. It is left-continuous (continuous from the left) at c if

 $\lim_{x\to c^-} f(x) = f(c).$

Example 8:

Find the points at which the function f in Figure is continuous and the points at which f is discontinuous.

Solution:

The function *f* is continuous at every point in its domain [0, 4] except at x = 1, x = 2, and x = 4.

EXAMPLE 9: A Function Continuous

The function $f(x) = \sqrt{4 - x^2}$ is continuous at every point of its domain, [-2, 2], (Figure), including x = -2, where f is right-continuous, and x = 2, where f is leftcontinuous.

We summarize continuity at a point in the form of a test.

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three conditions.

- 1. f(c) exists (c lies in the domain of f)
- 2. $\lim_{x\to c} f(x)$ exists (f has a limit as $x \to c$)

3. $\lim_{x\to c} f(x) = f(c)$ (the limit equals the function value)

Example 10:

$$f(x) = \begin{cases} 3+x & x \le 1 \\ 3-x & x > 1 \end{cases}$$

$$f(1) = 3+1 = 4$$

$$\lim_{x \to 1^{-}} 3+x = 3+1 = 4$$

$$\lim_{x \to 1^{+}} 3-x = 3-1 = 2 \qquad \therefore \ \lim_{x \to 1^{-}} 3+x \neq \lim_{x \to 1^{+}} 3-x$$

 \therefore f(x) discontinuous at x = 1.

Example 11:

$$f(x) = \begin{cases} \frac{1}{x-2} & x \neq 2\\ 3 & x = 2 \end{cases}$$
$$f(2) = 3 \& \lim_{x \to 2} \frac{1}{x-2} = \frac{1}{0} = \infty$$

 \therefore no limit, f(x) discontinuous.

EXERCISES 5.2:

¹ Which of the following statements about the function y = f(x) graphed here are true, and which are false?

- a. $\lim_{x \to -1^+} f(x) = 1$
- c. $\lim_{x \to 2} f(x) = 2$

- b. $\lim_{x \to 2} f(x)$ does not exist. d. $\lim_{x \to 1^{-}} f(x) = 2$
- e. $\lim_{x \to 1^+} f(x) = 1$ f. $\lim_{x \to 1} f(x)$ does not exist.
- g. $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x)$
- h. $\lim_{x \to c} f(x)$ exists at every c in the open interval (-1, 1).
- i. $\lim_{x \to c} f(x)$ exists at every c in the open interval (1, 3).
- j. $\lim_{x \to -1^-} f(x) = 0$ k. $\lim_{x \to 3^+} f(x)$ does not exist.

2. a. Graph
$$f(x) = \begin{cases} 1 - x^2, & x \neq 1 \\ 2, & x = 1. \end{cases}$$

- **b.** Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$.
- c. Does $\lim_{x\to 1} f(x)$ exist? If so, what is it? If not, why not?

3. Find One-Sided Limits Algebraically In Following Exercises .

a.
$$\lim_{x \to -0.5^{-}} \sqrt{\frac{x+2}{x+1}}$$
 b.
$$\lim_{x \to -2^{+}} \left(\frac{x}{x+1}\right) \left(\frac{2x+5}{x^2+x}\right)$$
 C.
$$\lim_{h \to 0^{-}} \frac{\sqrt{6} - \sqrt{5h^2 + 11h + 6}}{h}$$

d. $\lim_{x \to 1^+} \frac{\sqrt{2x} (x - 1)}{|x - 1|}$

4. Using $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, Find the limits in following Exercises.

1.
$$\lim_{t \to 0} \frac{\sin(1 - \cos t)}{1 - \cos t}$$
 2.
$$\lim_{x \to 0} \frac{x \csc 2x}{\cos 5x}$$
 3.
$$\lim_{x \to 0} \frac{x + x \cos x}{\sin x \cos x}$$

5. Find the limit of each function (a) as $X \rightarrow \infty$ and (b) as $X \rightarrow -\infty$.

1.
$$g(x) = \frac{1}{8 - (5/x^2)}$$
 2. $h(x) = \frac{-5 + (7/x)}{3 - (1/x^2)}$ 3. $h(x) = \frac{3 - (2/x)}{4 + (\sqrt{2}/x^2)}$

4.
$$f(x) = \frac{2x^3 + 7}{x^3 - x^2 + x + 7}$$
 5. $f(x) = \frac{3x + 7}{x^2 - 2}$

6. In Exercises 1–3, say whether the function graphed is continuous on [-1, 3].

8. At what points are the functions in Exercises 1–3 continuous?

1.
$$y = \frac{1}{(x+2)^2} + 4$$

2. $y = \frac{x+3}{x^2 - 3x - 10}$
3. $y = \sqrt[4]{3x-1}$
4. $y = (2-x)^{1/5}$

9. Define g(3) in a way that extends $g(x) = (x^2 - 9) / (x - 3)$ to be continuous at x = 3.

10. Define g(4) in a way that extends $g(x) = (x^2 - 16) / (x^2 - 3x - 4)$ to be continuous at X = 4.

11. For what value of *a* is, $f(x) = \begin{cases} x^2 - 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$, continuous at every *x*?