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Limit of a Function
Let f(x) be defined on an open interval about x, except possibly at itself. We say that

the limit of f(x) as x approaches X, is the number L, and write

lim f(x) = L,

.":_:".TD

Example 1: The Identity and Constant Functions Have Limits at Every Point

(a) If f is the identity function f(x) = x., then for any value of xg

Iim f(x) = Ihm x = xg.
XX XX

lim(4) = 4 lim (4) =

x—2 x——13

) If f is the constant function f(x) = k (function with the constant value k), then for

any value of xg lim f(x) = lim k = k.

R ] XX

For instance,

lim x = 3 and l[im (4) = lim(4) = 4.

x—3 x——7 x—2



» Calculating Limits Using the Limit Laws

The next theorem tells how to calculate limits of functions

THEOREM 1 Limit Laws
If L. M, ¢ and k are real numbers and

Iim f(x) = L and lim g{x) = M, then

1. Sum Rule: Iim(f(x) + g(x)) =L + M

The limit of the sum of two ﬁmc:tiunsﬁ?fhe sum of their limits.

2. Difference Rule: |i_rP (fix) —glx)) =L — M

The limit of the difference of two ﬁjﬂéliﬂfﬂﬂ 15 the difference of their limits.
3. Product Rule: Jﬂ[ﬁ{x] -glx))=L-M

The Iimit of a product of two functions is the product of their Iimits.



4. Constant Multiple Rule: lim(k- f(x)) = k- L

The limit of a constant times a function 1s the constant times the limit of the

function.

5. Quotient Rule: tim T _ L M#0

X—*r E{I}
The limit of a quotient of two functions 1s the quotient of their limits, provided
the limit of the denominator 1s not zero.

6. Power Rule: If r and 5 are integers with no common factor and 5 # 0, then

lm( f(x))"* = L7*

X—*r

provided that L"" is a real number. (If 5 is even, we assume that L = 0.)



EXAMPLE 2: Using the Limit Laws to find the following limits.

- 3 2 ~ oxt 4+ xt -1 ] o B
(a) Iim(x" + 4x° — 3) {(b) Iim = {c) lmm dx= — 3
X—*r X—*r r~ 4+ 5 x—r—72
Solution
(a) 1irr1[x3 + 4x? — 3) = lim ¥ 4+ lim 4x* — lim 3 Sum and Difference Rules
X—r X—rr X—*r Ir—er
=+ 427 — 3 Product and Multiple Rules
PR |£n(x4+xl—l]
(b) lim X X = uotient Rule
r—e  x*+ 5 lim(x? + 5)
X—r
- __1 - 2 v
lm x*° + llm x* — lIim 1
= =5 - I;E - — Sum and Difference Rules
lm x* + lim 5
X—rc X—*rr

ct+ -1 -
= 3 Power or Product Rule
c 4+ 5




(¢) lim V4x2 — 3 =V lim (4 — 3) Power Rule with rfs = 14

x——2 x——2
= 1'-.""} lim -'-'I:-l:2 — lm 3 Difference Rule
x——2 x——2
= "'v”fﬂl{—?]l — 3 Product and Multiple Rules
= %16 —3
= V13
THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If P(x) = a,x" + a,_1x" ! + --- + ag, then
lim P(x) = P(c) = ape™ + ap_1c" ' + -+ + aqg.
X—*r

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and (Nx) are polynomials and Q(c) # 0, then

L P} Ple)
X—*C Q{I} Q{E]-
. xt+x -2
Example 3: Evaluate  lim 5 .
x—=1  x° — Xx

Solution : We cannot substitute because it makes the denominator zero.



x2+x—2=(1-1)(x+2)=x+2
Xt —x xx - 1) x

Using the simpler fraction, we find the limit of these values as x — 1 by substitution:

ifx # 1.

2 X 1 :

=l Xt —-x x—|

EXAMPLE 4 Creating and Canceling a Common Factor

Evaluate

V'x2 + 100 — 10
5 i

Im
x—0 x



Solution: We cannot substitute x = 0, and the numerator and denominator have
no obvious common factors. We can create a common factor by multiplying both

numerator and denominator by the expression Vx2 + 100 + 10,

VxZ 4+ 100 — 10 _ Vx2 + 100 — 10 Vx2 + 100 + 10
x* x” Vx? + 100 + 10
__ x*+ 100 — 100
x2(Vx? + 100 + 10)

2
— X 2
= Common factor x

x2(Vx% + 100 + 10)
1

= Cancel x* forx # 0

VxZ + 100 + 10

Therefore,

o NX2T 100 — 10 1

Iim 5 = lm =

x—=0 x —0 /%2 + 100 + 10

1 Denommator
= 5 not 0 at x = 0
0% + 100 + 10 substitute

-1 _ o.0s.

20



EXERCISES 5.1:

”Find the limits in the following Exercises

1.
4.
7.

10.

”Using Limit Rules to solve the following Exercises .

lim (x* — 2x* + 4x + §)

x——2

lim (5 — y)*°

'I'—- .

X+ 3x — 10

lim

x—+—5

lim

a—=1

y + 5

1 — “VWv'x

1 — x

2. lim13.5[23 — 1]
F—>24
) vy + 2
5. lim —
=2 y-+ Sy + 6
8. im XX
=42 — Wy
A3
11 ji 22 = 8
x—=}

3. lim (5 — y)*

V—F—

6. lim (x + 3™
x——4
2417 —
9. lim s l; !
r—2 X — £
1 1
2
12. |y 2+ x 2
i—=ql -

. Suppose lmy—g f(x) = | and hmy—gg(x) = -5, Name the rules in Theorem |

a'

x—=0

Z2f(x) — g(x)

( Ffilx) + 713

2. Lgt limgsy hx) = 5,limg—; plx) = 1, and limy—; r(x) =2, Name the rules in Theorem |

a.

Y Sh(x)

lim

r—1 x4 — rix))



One-Sided Limits and Limits at Infinity

In this section we extend the limit concept to one-sided limits, which are limits as X
approaches the number Xo from the left-hand side (where X < Xo) or the right-hand
side (X > Xo) only, and other functions with limit behavior as X - +co.

” One-Sided Limits:

a. if f(x) is defined on an interval (c, b), where ¢ < b and approaches arbitrarily
close to L as x approaches ¢ from within that interval, then f has right-hand limit L

at c. We write, ]lt't'i flx) =

The symbol XSct - means that we con5|der
L b filx) I
only values of x greater than c. ]

0 il —

b. if f(x) is defined on an interval (g, ¢), where a< ¢ and approaches arbitrarily
close to M as x approaches ¢ from within that interval, then f has left-hand limit M

at c. We write, ]l]'l'l flx) = M. 3

—_—

The symbol “x->c-” means that we consider feo

* X

only x values less than c. 0 FR—



EXAMPLE 5 One-Sided Limits for a Semicircle shown in figure.

The domain of f(x)=Vv4 — x2is[-2,2] . We have, y
y=V4 x°
im V4-x*=0 and lim V4 -x*=0. / \
x—-2" x—2 | i
__* 0 * .

The function does not have a left-hand limit at X =-2 or a right-hand limitat x = 2.
It does not have ordinary two-sided limits at either-2 or 2. (the function is one_side
limits)

THEOREM 6

A function f(x) has a limit as x approaches ¢ if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim f(x) =L <= lim f(x) =L  and lim f(x) = L.

X—*C X—C X—*C



eLimits Involving (sin8)/0

A central fact about (sin@) /0 is that in radian measure its limit as 8— 0is 1. We can
see this in Figure,

¥
k.

/Y si:;  (radians)
| | | > 8
3w 2y o —D I
THEOREM 7
glirr:l 5]:; o _ i (@ in radians) (1)
) : in &

EXAMPLE 6: lUsing lim 2'5= =1 Show that,

_ . sin 2a 2
a. lim<sh=1_, b. lim—7= =%

h—0 h



Solution:

(a) Using the half-angle formula,

1—cos20
2

Note. When sin?0 = > 2sin?0=1—co0s20 = cos20 =1— 2 sin’0

Let,20=h > B=%, than cosh=1—25in2%.

— —_72<¢in2 (h _ 2 (h
The . lim cosh—1_ lim 1-2sin® (1/,) -1 lim — 2sin? (1/,) divided by 2 obtain =
() s sin(t)
T sin™ \"/2) _ sm ») *sin( "/, _ ] .
’1111‘)1‘(1) "2 ’1111‘)1‘(1) n72 (1) « ’lll_r)l‘(l] sin("*/5)

- (1) xSin(O/z) == (1)x (0) =

(b) We need a 2x in the denominator,not a 5x. We produce it by multiplying

: 5
numerator and denominator by "

lim sin 2x — lin {E.-'G}' sin 2x
x—=0 X Jr—i-l} [:EI,-IE:] « Ax
_gl sinEx
5, 2x
2 2
= 3(1] =3



eFinite Limits as X —

1. We say that fix) has the limit L as x approaches infinity and write

lim f(x) = L
2. We say that f(x) has the limit L as x approaches minus infinity and write
lim f(x) =1L

THEOREM 8 Limit Laws as x — + oC

If L. M. and &, are real numbers and

fod I

b

h

111]11::::' fix) = L and _111]::11.:::3(1} = M, then

Sum Rule: ETW(}({I} + glx)) =L+ M
Difference Rule: ' lim (f(x) —g(x) =L - M

Product Rule: -T_limm[_f{x] cgix))=L-M

Constant Multiple Rule: _1%@(;.:- F(x)) = k-L

Ouotient Rule: _TETG?% = %._, M=0

Power Rule: If r and s are integers with no common factors, s # 0, then

lim (f(x))"* = L™
x—= 00

provided that L is a real number. (If s is even, we assume that L = 0.)



EXAMPLE 7 Find the following limits of a functions as x>+,

(a) lim 5+})= lim 5 + lim +

=5 +0=35
. a3 i ~ 11
k) lm T5= = lim w\3egg
~ = /A e Lo L
= lim #V3- lim - lim 3
=7\V3:0-0=0
C 2 —_ 2 L
(c) lim Sx? "'st —3 — lim > + (8/x) 53/x ) Divide numerator and
e Xt A2 = 3 + (2/x%) denominator by x°.
5+0-0_5
B 3+0 3
(e) 11 2 2 3 .
lim X +2 (11/x7) + 2/x7) Divide numerator and
s 2t — 1 a2 — (1/x7) denominator by x°.

0+ 0
2—-0

=0



eContinuous Functions

DEFINITION Continuous at a Point
Interior point: A function y = f(x) is continuous at an interior point ¢ of its
domain if

lim f(x) = fle).

Endpoint: A function y = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

lim_f(x) = fla) or lim f(x) = f(b), respectively.

r—sg x=—+h

If'a function f is not continuous at a point ¢, we say that f is discontinuous at ¢ and ¢
s a point of discontinuity of f. Note that ¢ need not be in the domain of f.

A function f is right-continuous (continuous from the right) at a point x = ¢ in its
domain if lim,—. f(x) = f(c¢). It is left-continuous (continuous from the left) at ¢ if

lim,- f(x) = f(c).



Example 8:

Find the points at which the function f in Figure is continuous and the
points at which f is discontinuous.

Solution:
The function f is continuous at every point in its domain

[0, 4] exceptat x=1, x=2, and x= 4.




EXAMPLE 9: A Function Continuous
The function f(x) = V4 — x?2 is continuous at every point of its domain, [-2, 2],

(Figure), including x = -2, where f is right-continuous, and x = 2, where f is left-
continuous.

.

We summarize continuity at a point in the form of a test.

Continuity Test
A function f(x) i1s continuous at x = ¢ if and only if it meets the following three
conditions.

1. f(c)exists (¢ lies in the domain of f)
2. limy—. f(x) exists (f has a limit as x — ¢)
3. limy—. f(x) = f(c) (the limit equals the function value)



Example 10:
3+ <1
=31 25

3—x x>1

f(1)=3+1=4
lim34+x=3+1=4

x-1"

lim3-x=3-1=2

~ f(x) discontinuous at x = 1.

Example 11:

1
f(x>=[ﬁ ”2}
3 x=2

v lim3+x#lim3-x

x—1t x-1"

x—17

~ no limit , f(x) discontinuous.



EXERCISES 5.2:

1 YWhich of the following statements about the function y = flx)
graphed here are true,. and which are false?

¥
.
¥ = flx)
L
i
Z 3 -
a. b 11[n1E Fix) does not exist.
. 5 — X—=
c. lim fix) = 2 d. lim fix) = 2
r—eF x—=1]
1]-“[1_ fix) =1 f. 1in‘§ Fix) does not exist.
i—= X
lim_ flx) = lim  fi{x)
a—=0" x—=0
h. lim Ff(x) exists at every c in the open interval (—1. 1).
I—=

i. lim f(x) exists at every < in the open interval (1, 3).
I—=

j- i flx) = 0O k. lim, f{x) does not exist.

xa—=—1 Xx—=3



1—3.'1, x# |
2. a. Graph f(x) = {E 1

b. Find limy—;+ f(x) and lim,—- f(x).

¢, Does limy— f(x) exist? If so, what is it? If not, why not?



3. Find One-Sided Limits Algebraically In Following Exercises .

a. . r+ 2 b. . v + 5§ C. v Vo - Vi +11h+6
lim lim [— : lim
r——0.5 I"-. x+ 1 =2t \X T l_ =+ =) JEI
d  V(x-1)
lim
—1"  |x — 1]
. . sin® . T . .
4. Using limg_,, o = 1, Find the limits in following Exercises.
_ sin(l — cos¥) - xesely 1 xCOBx
1. lim 2. i , 3. lim —— -
(—n | — cost r—0 08 1@1 SiN x COS X

5. Find the limit of each function (a) as x o and (b) as x — -0 .

1. 2. —5 + (7/x) 3. 3 — (2/x)
| _ x) = —
glx) = 8~ (5/x") W) =53 (1/x%) ") 4 + (W2/x)




W3+ T

4 1) =

O-xt4x+T

5. flx) =

_'n:'—'T"

6. In Exercises 1-3, say whether the function graphed is continuous on [-1, 3].

¥ = flx)

y = glx)
2_
/’/\:
A |
] ] ] ]
-1 0 I 2 3

E

i

F:FELI}




8. At what points are the functions in Exercises 1-3 continuous?

Lo 2. v+ ] 3. p= V-1 4. _1'=[?-.T]|"5

Tt RN

9. Define g(3) in a way that extends g(x) = (x%-9) /(x — 3) to be continuous at x = 3.

10. Define g(4) in a way that extends g(x) = (x? — 16) / (x? —3x —4) tobe

continuous at X =4.

11. For what value of g is, f{x} _ {I , continuous at every x?

2ax, r=3
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