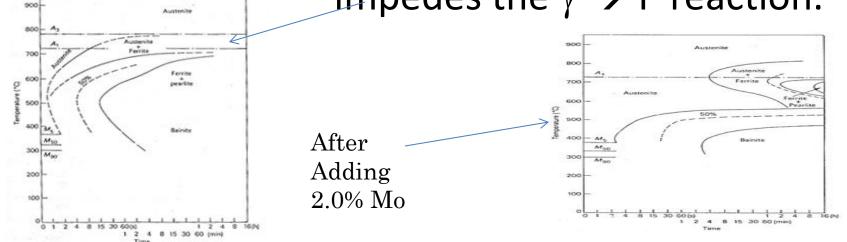
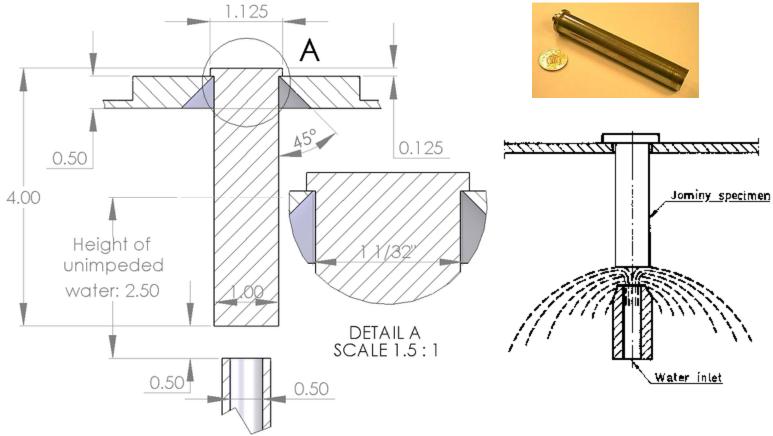
## Hardenability

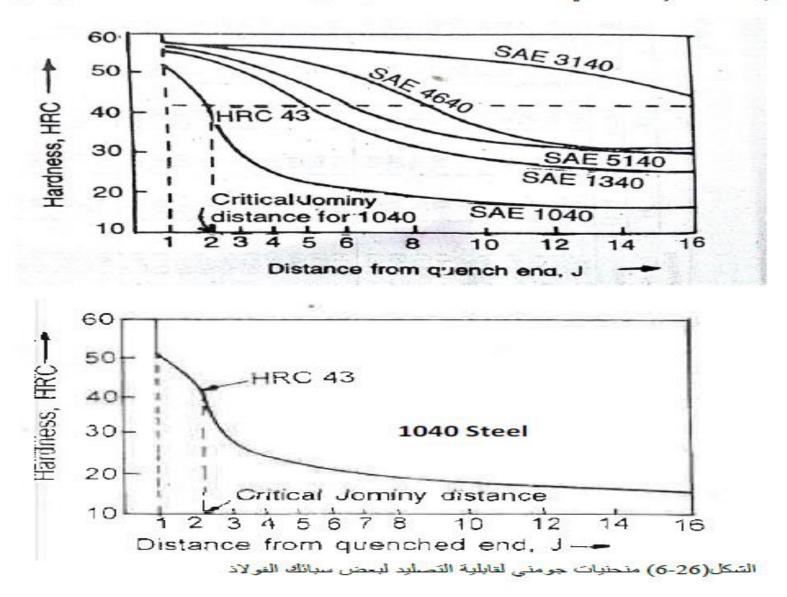

ABBAS KHAMMAS 2014

# Hardenability

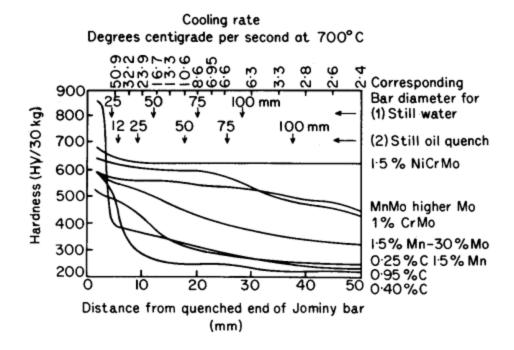
- We have seen the advantage of getting martensite, M.
  We can temper it, getting TM with the best combination of ductility and strength.
- But the problem is this: getting M in depth, instead of just on the surface. We want a steel where Pearlite formation is relatively sluggish so we can get it to the cooler regions where M forms.
- The ability to get M in depth for low cooling rates is called hardenability.
- Plain carbon steels have poor hardenability.


## Factors Which Improve Hardenability

- 1. Austenitic Grain size. The Pearlite will have an easier time forming if there is a lot of g.b.
  area. Hence, having a large austenitic grain
  TTT diagram of a size improves hardenability.
- $\begin{array}{c} \begin{array}{c} \text{molybdenum} \\ \text{steel } 0.4\text{C} \\ 0.2\text{Mo} \end{array} \quad \textbf{2. Adding alloys of various kinds. This} \\ \hline \text{impedes the } \gamma \rightarrow \text{P reaction.} \end{array}$




# Jominy Test for Hardenability

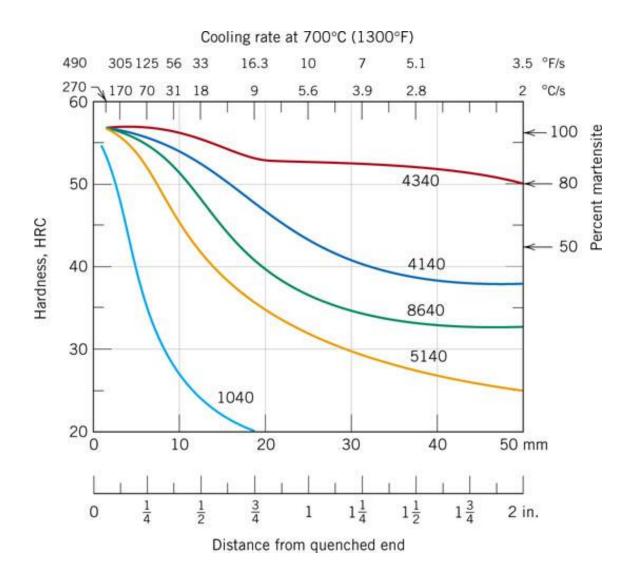

Hardenability not the same as hardness! •



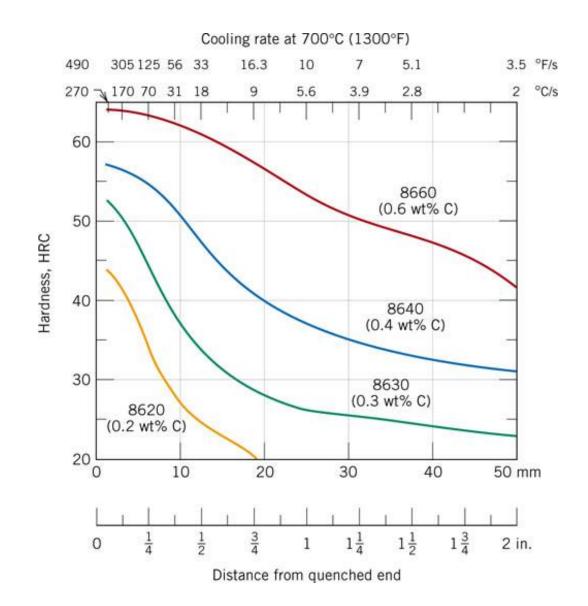
إن نقطة الإنقلاب في هذه المنحنيات تناظر التركيب Martensite و هو



## The Result is Presented in a Curve

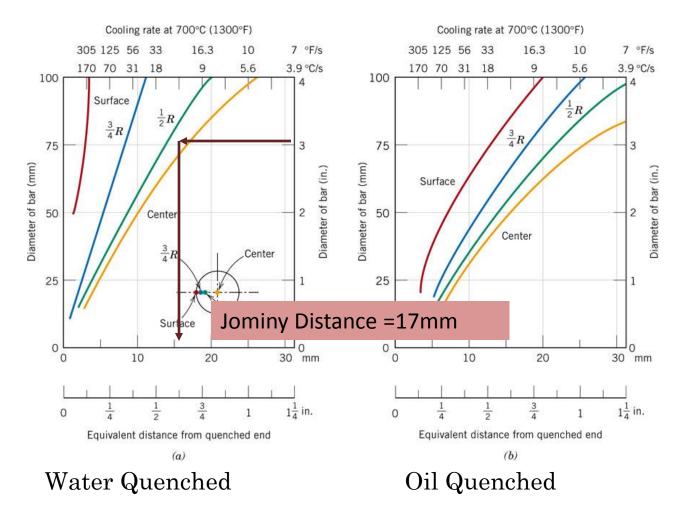



Rank steels in order of hardenability.

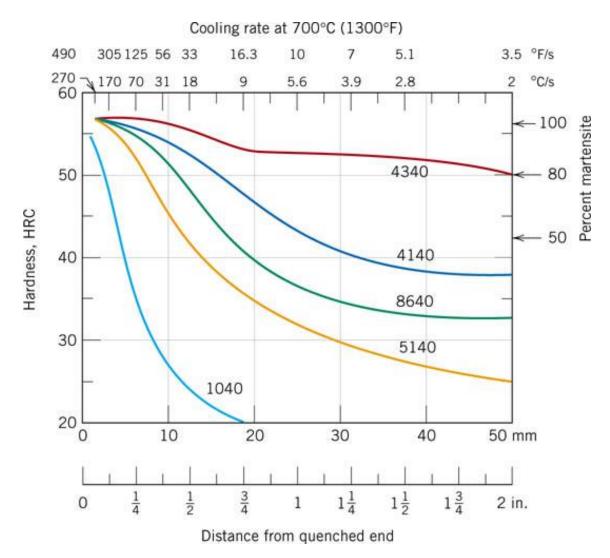

Note:

- Distance from quenched end corresponds to a cooling rate, and a bar diameter
- Notice that some steels drop off more than others at low cooling rates.
  Less hardenability!

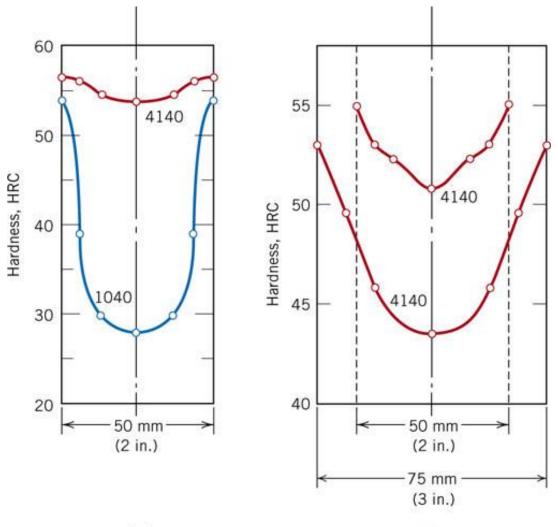
### Alloying and Hardenability




#### **Carbon and Hardenability**

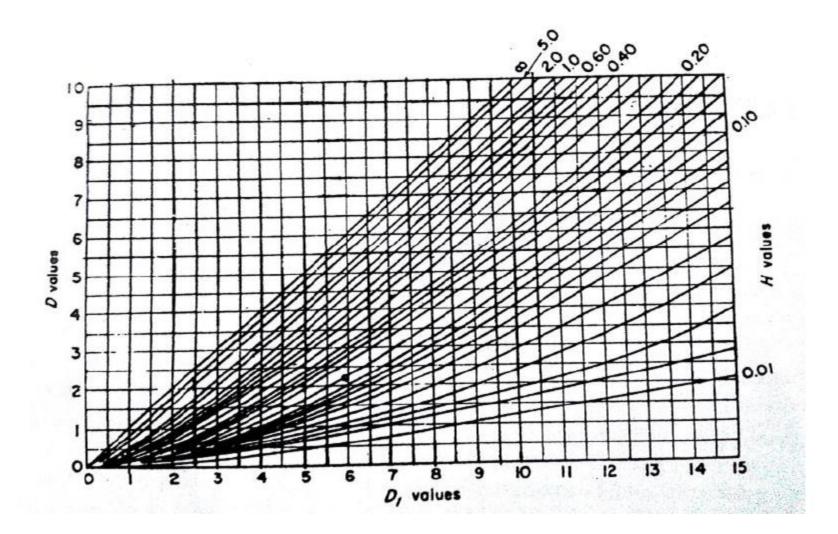


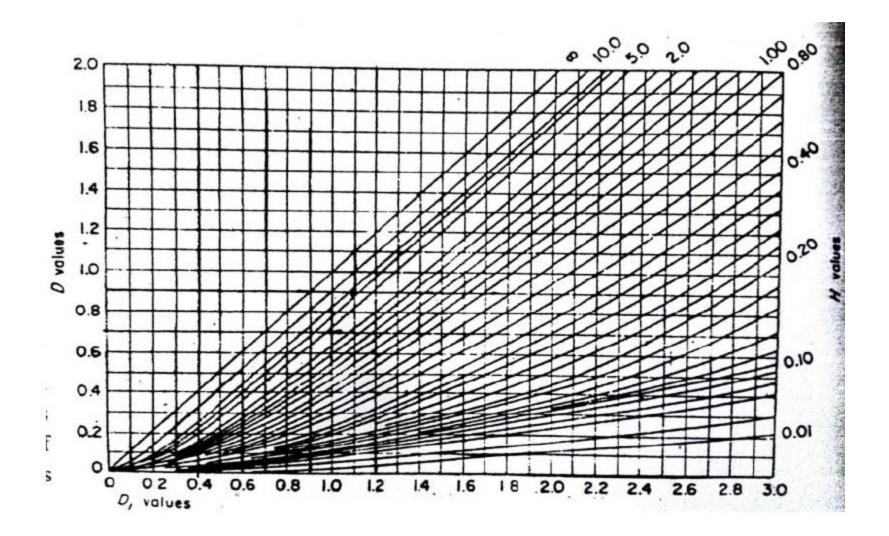

## Hardness and Hardenability


#### Predict the center hardness in a water quenched 3" bar of 8640



## Alloying and Hardenability





### **Depth of Hardening**



(a)

*(b)* 





$$\begin{split} \frac{\text{attribute}(6-1)}{\text{product}} & \text{attribute}(6-1) \\ \text{attribute}(1,0) \\ \text{attri$$

مثال(<u>2-6)</u>

أجريت عملية التقسية في حمام الماء المتحرك (وجود خضخضة) Agitated Water Bath لعدد من قضبان ألفولاذ الدائرية ذات الأقطار المختلفة . وتم الحصول على النتائج التالية . إحسب شدة التقسية (H) لحمام الماء .

| Du, inch = 0.63  | 1.72 | 2.54 | 5.38 |
|------------------|------|------|------|
| D, inch = $2.10$ | 2.67 | 3.33 | 6.00 |

الحل

 $Du/D = 0.30 \quad 0.644 \quad 0.763$ 

Now Follow Steps:

- ➡ A transparent paper is taken and put on Fig.(6-21).
- X and Y axes are drawn.
- Du/D are plotted against D on it.
- The paper is moved. The curve is matched with curves in Fig.(6-21). It matches well with the curve that which cut the x-axis of this curve, where DH=3.

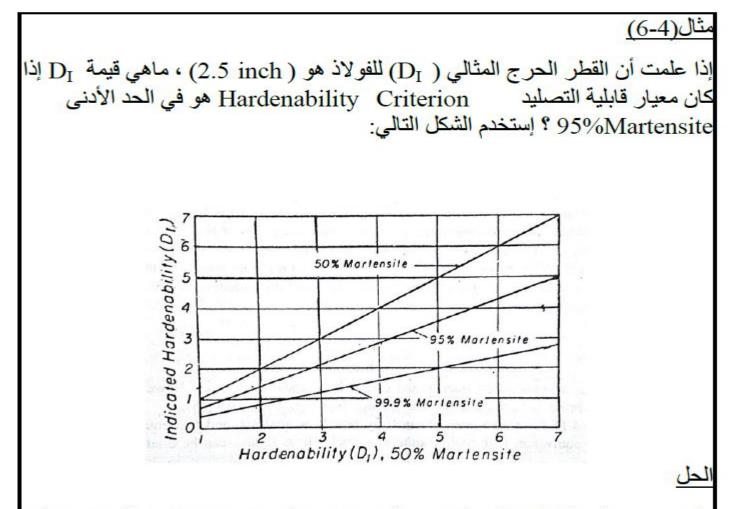
0.897

Now, when D=3.33, and Du/D=0.763 (draw a vertical line from this point), DH=5, thus :

$$H = \frac{DH}{D} = \frac{5}{3.33} = 1.50$$

#### مثال(3-6)

حدد قيمة القطر الحرج المثالي Ideal Critical Diameter (D<sub>I</sub>) للفولاذ في المثال(2-6) عندما تكون H=1.5 . الحل


هناك طريقتين يمكن من خلالهما حل هذه المسألة تتضمن:

**1** The match curve of Fig.6-21 has a value of D<sub>C</sub>xH=3 when Du/D=0, thus,  $D_c = \frac{D_c H}{H} = \frac{3}{1.5} = 2$  inch.

Now, take help of Fig. 6-24, to get  $D_I$ , when H=1.5,

 $D_I=2.65$  inch.

The curve drawn on transparent paper is extrapolated to x-axis, when Du/D of this curve =0, then the value at x-axis is D<sub>C</sub>=2 inch, Now use Fig.6-24, to get D<sub>I</sub> for D<sub>C</sub> =2 inch and H=1.5, D<sub>I</sub>=2.65 inch.

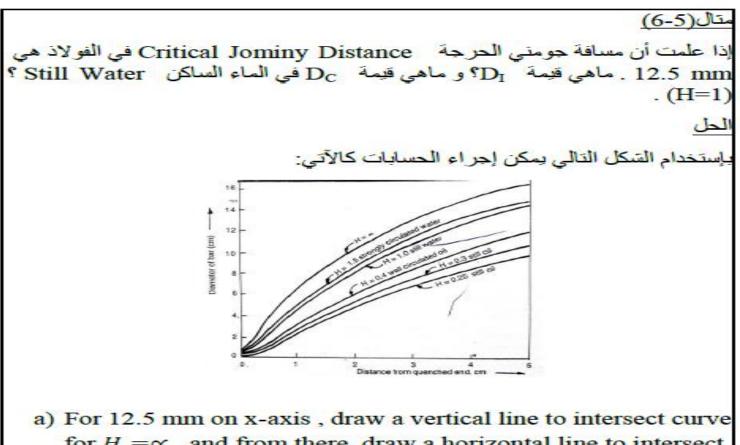


Given D<sub>I</sub> for 50%Martensite . Use above Fig. for 2.5 inch on x axis , draw a vertical line to cut the curve for 95%Martensite, and then from that point , draw a horizontal line to cut y-axis .

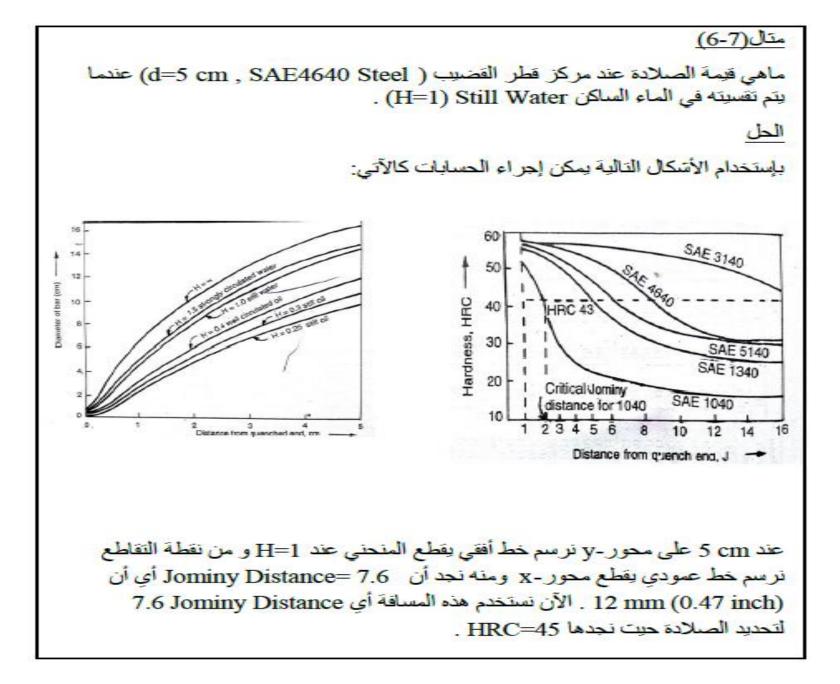
The value is 1.77 inch.

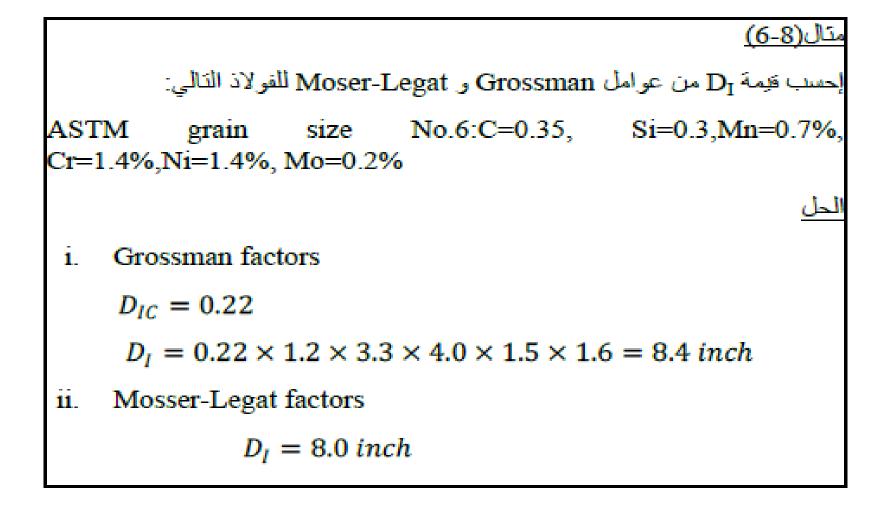
Thus,  $D_I$  (95%Martensite) = 1.77 inch.

| Carbon<br>wt. % | Maximum<br>Hardness, HRC | Carbon<br>wt. % | Maximum<br>Hardness, HRC |  |
|-----------------|--------------------------|-----------------|--------------------------|--|
| 0.10            | 38                       | 0.36            | 54                       |  |
| 0.11            | 39                       | 0.37            | 55                       |  |
| 0.12            | 40                       | 0.38            | 55                       |  |
| 0.13            | 40                       | 0.39            | 56                       |  |
| 0.14            | 41                       | 0.40            | - 56                     |  |
| 0.15            | 41                       | 0.41            | 57                       |  |
| 0.16            | 42                       | 0.42            | 57                       |  |
| 0.17            | 42                       | 0.43 .          | 58                       |  |
| 0.18.           | 43                       | 0.44            | 58                       |  |
| 0.19            | . 44                     | 0.45            | 58                       |  |
| 0.20            | - 44                     | 0.46            | 59                       |  |
| 0.21            | 45                       | 0.47            | 59                       |  |
| 0.22            | 45                       | 0.48            | 59                       |  |
| 0.23            | 46                       | 0.49            | 60                       |  |
| 0.24            | - 46                     | 0.50            | 60                       |  |
| 0.25            | 47                       | 0.51            | 60                       |  |
| 0.26            | 48                       | 0.52            | 61                       |  |
| 0.27            | 49                       | 0.53            | 61                       |  |
| 0.28            | 49                       | 0.54            | . 61                     |  |
| 0.29            | 50                       | 0.55            | 61                       |  |
| 0.30            | - 50                     | 0.56            | 61                       |  |
| 0.31            | 51                       | 0.57            | 52                       |  |
| 0.32            | 51                       | 0.58            | 62                       |  |
| 0.33            | 52                       | 0.59            |                          |  |
| 0.34            | 53                       | 0.60            | 62                       |  |
| 035             | 53                       | . 0.00          | 62                       |  |


الجدول (6-4) علاقة محتوى الكاربون مع الصلادة Hardeness HRC

| Percent # 6 | . Ca    | Carbon-Grain Size |          | Mn    | Sį      | * Ni  | Cr     | -    |
|-------------|---------|-------------------|----------|-------|---------|-------|--------|------|
|             | #7      | # 8               | Mo       |       |         |       |        |      |
| 0.05        | 00814   | 0.0750            | 0.0697   | 1.167 | 1.035   | 1.018 | 1.1080 | 1.15 |
| 0.10        | 0.1153  | 0.1060            | 0.0995   | 1.333 | 1.070   | 1.036 | 1.2160 | 1.30 |
| 0.15        | 0.1413  | 0.1315            | 0.1212 . | 1.500 | 1.105   | 1.055 | 1.3240 | 1.45 |
| 0.20        | 0.1623  | 0.1509            | 0.1400   | 1.667 | 1.140   | 1.073 | 1.4320 | 1.60 |
| 0.25        | 0.1820  | 0.1678            | 0.1560   | 1.833 | - 1.175 | 1.091 | 1.54   | 1.75 |
| 0.30        | 0.1991  | 0.1849            | 0.1700   | 2.000 | 1.210   | 1.109 | 1.6480 | 1.90 |
| 0.35        | 0.2154  | 0.2000            | 0.1842   | 2.167 | 1.245   | 1.128 | 1.7560 | 2.05 |
| 0.40        | 0.2300  | 0.2130            | 0.1976   | 2.333 | 1.280   | 1.146 | 1.8640 | 2.20 |
| 0.45        | 0.2440  | 0.2259            | 0.2090   | 2.500 | 1.315   | 1.164 | 1.9720 | 2.3  |
| 0.50        | 0.2580  | 0.2380            | 0.2200   | 2.667 | 1.350   | 1.182 | 2.0800 | 2.50 |
| 0.55        | 0.273 · | 0.251             | 0.231    | 2.833 | 1.385   | 1.201 | 2.1880 | 2.65 |
| 0.60        | 0.284   | 0.262             | 0.241    | 3.000 | 1.420   | 1.219 | 2.2960 | 2.80 |
| 0.65        | 0.295   | 0.273             | 0.251    | 3.167 | 1.455   | 1.237 | 2.4040 | 29   |
| 0.70        | 0.306   | 0.283             | 0.260    | 3.333 | 1.490   | 1.255 | 2.5120 | 3.10 |
| 0.75        | 0.316   | 0.293             | 0.270    | 3.500 | 1.525   | 1.273 | 2.62   | 3.25 |
| 0.80        | 0.326   | 0.303             | 0.278    | 3.667 | 1.560   | 1.291 | 2.7280 | 3.40 |
| 0.85        | 0.336   | 0.312             | 0.287    | 3.833 | 1.595   | 1.309 | 2.8360 | 3.55 |
| 0.90        | 0.346   | 0.321             | 0.296    | 4.000 | 1.630   | 1.321 | 2.9440 | 3.70 |
| 0.95        |         |                   |          | 4,167 | 1.665   | 1.345 | 3.0520 | 3.55 |
| 1.00        |         |                   |          | 4.333 | 1.700   | 1.364 | 3.1600 | 3.70 |


الجدول(6-6) عوامل الضرب لكروس مان Grossman Multiplication Factors


الفسفور Phosphor و الشوائب Impurities فإن قيمة معامل الضرب تعتبر وحدة واحدة أي أن:

 $f_S = f_P = 1$ 



- for *H* =∝, and from there, draw a horizontal line to intersect curve at y-axis (75 mm) D<sub>I</sub>=75 mm
- b) For  $D_T=75 \text{ mm}$ , draw a horizontal line to intersect curve for  $H = \propto$  and from this intersection point, draw a vertical line to intersect curve for H = 1, and draw a horizontal line to intersect y-axis to get  $D_C(\text{in H}=1)=50 \text{ mm}$ .





متال (6-9)  
إحسب قابلية التصليد (قيمة D<sub>I</sub>) باستخدام عو امل Grossman للفو لاذ التالي:  
ASTM grain size No.7:C=0.35, Si=0.35,Mn=1%,  
Cr=0.5%,Ni=0.7%, Mo=0.1%  
الحل  
$$D_{IC} = 0.2$$
  
 $f_{Mn} = 4.333$   $f_{Si} = 1.245, = 1.255, f_{Cr} = 2.080, f_{Mo} = 1.30$   
 $D_{I} = 0.2 \times 4.333 \times 1.245 \times 1.255 \times 2.08 \times 1.3 = 3.66$  inch